找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 太平間
21#
發(fā)表于 2025-3-25 07:22:55 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:01 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:24 | 只看該作者
24#
發(fā)表于 2025-3-25 17:15:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:02:03 | 只看該作者
https://doi.org/10.1007/978-3-662-65102-5 network. Experimental results on large-scale dataset demonstrate the effectiveness of the proposed model against the state-of-the-art (SOTA) SR methods. Notably, when parameters are less than 320k, A.F outperforms SOTA methods for all scales, which proves its ability to better utilize the auxiliary features. Codes are available at ..
26#
發(fā)表于 2025-3-26 03:21:39 | 只看該作者
Image Inpainting with Onion Convolutions an efficient implementation. As qualitative and quantitative comparisons show, our method with onion convolutions outperforms state-of-the-art methods by producing more realistic, visually plausible and semantically coherent results.
27#
發(fā)表于 2025-3-26 06:37:23 | 只看該作者
CS-MCNet: A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensationo . better than state-of-the-art methods. In addition, due to the feed-forward architecture, the reconstruction can be processed by our network in real time and up?to three orders of magnitude faster than traditional iterative methods.
28#
發(fā)表于 2025-3-26 09:16:35 | 只看該作者
Restoring Spatially-Heterogeneous Distortions Using Mixture of Experts Networkresentations. Our model is effective for restoring real-world distortions and we experimentally verify that our method outperforms other models designed to manage both single distortion and multiple distortions.
29#
發(fā)表于 2025-3-26 15:03:47 | 只看該作者
Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Networklf-supervision and a perceptual loss for content preservation. In addition to qualitative evaluation, we design an image quality assessment network to rank the dehazed images. Experimental results on both real and synthetic test data demonstrate that the proposed method performs superiorly against several state-of-the-art land dehazing methods.
30#
發(fā)表于 2025-3-26 17:08:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖安县| 怀集县| 安新县| 海淀区| 家居| 曲周县| 浑源县| 左云县| 正安县| 巨野县| 宝坻区| 马鞍山市| 长乐市| 全州县| 都安| 贵南县| 沙田区| 方正县| 莆田市| 乌兰浩特市| 邵武市| 罗江县| 岑巩县| 海淀区| 塘沽区| 巩义市| 栾城县| 林州市| 济宁市| 吉林省| 铜梁县| 错那县| 海宁市| 紫云| 宣化县| 巫山县| 宜良县| 彭阳县| 嘉禾县| 观塘区| 澜沧|