找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 太平間
31#
發(fā)表于 2025-3-27 00:37:19 | 只看該作者
0302-9743 , Japan, in November/ December 2020.*.The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; segmentation and grouping..Part II: low-level vision, i
32#
發(fā)表于 2025-3-27 01:32:21 | 只看該作者
33#
發(fā)表于 2025-3-27 07:10:50 | 只看該作者
https://doi.org/10.1007/978-3-319-26047-1iate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
34#
發(fā)表于 2025-3-27 11:28:23 | 只看該作者
Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention NetworkCAB). Several models of different sizes are released to meet various practical requirements. Extensive benchmark experiments show that the proposed models achieve better performance with much fewer multiply-adds and parameters (Source code is at .).
35#
發(fā)表于 2025-3-27 17:19:25 | 只看該作者
An Efficient Group Feature Fusion Residual Network for Image Super-Resolutioniate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
36#
發(fā)表于 2025-3-27 18:50:42 | 只看該作者
37#
發(fā)表于 2025-3-27 23:53:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:48:30 | 只看該作者
https://doi.org/10.1007/978-1-349-03555-7ith non-stationary textures remains a challenging task for computer vision. In this paper, a novel approach to image inpainting problem is presented, which adapts exemplar-based methods for deep convolutional neural networks. The concept of . is introduced with the purpose of preserving feature cont
39#
發(fā)表于 2025-3-28 07:38:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
若羌县| 崇仁县| 通渭县| 荣成市| 江都市| 祥云县| 余江县| 任丘市| 绥中县| 龙泉市| 江油市| 新晃| 阿合奇县| 新绛县| 阿勒泰市| 沭阳县| 阿坝县| 林州市| 深州市| 鸡泽县| 西乌珠穆沁旗| 阿克| 嘉兴市| 当涂县| 新郑市| 乌拉特后旗| 灌云县| 贡山| 黑水县| 金沙县| 延长县| 盐边县| 泌阳县| 阿克陶县| 太原市| 陈巴尔虎旗| 云安县| 苏州市| 吴旗县| 临洮县| 宜兰县|