找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 太平間
51#
發(fā)表于 2025-3-30 12:00:33 | 只看該作者
https://doi.org/10.1007/978-3-319-26047-1ly to improve their performance by simply increasing the depth of their network. Although this strategy can get promising results, it is inefficient in many real-world scenarios because of the high computational cost. In this paper, we propose an efficient group feature fusion residual network (GFFR
52#
發(fā)表于 2025-3-30 13:26:31 | 只看該作者
53#
發(fā)表于 2025-3-30 17:52:28 | 只看該作者
54#
發(fā)表于 2025-3-30 22:49:05 | 只看該作者
https://doi.org/10.1007/978-3-662-65102-5their practical applicability. In this paper, we develop a computation efficient yet accurate network based on the proposed attentive auxiliary features (A.F) for SISR. Firstly, to explore the features from the bottom layers, the auxiliary feature from all the previous layers are projected into a co
55#
發(fā)表于 2025-3-31 04:44:56 | 只看該作者
Integrating the Engine in the Vehicle,he investigation on rain removal has thus been attracting, while the performances of existing deraining have limitations owing to over smoothing effect, poor generalization capability and rain intensity varies both in spatial locations and color channels. To address these issues, we proposed a Multi
56#
發(fā)表于 2025-3-31 05:40:50 | 只看該作者
Computer Vision – ACCV 2020978-3-030-69532-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
57#
發(fā)表于 2025-3-31 12:16:31 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/234127.jpg
58#
發(fā)表于 2025-3-31 15:04:58 | 只看該作者
Second-Order Camera-Aware Color Transformation for Cross-Domain Person Re-identification all the views of both source and target domain data with original ImageNet data statistics. This new input normalization method, as shown in our experiments, is much more efficient than simply using ImageNet statistics. We test our method on Market1501, DukeMTMC, and MSMT17 and achieve leading perf
59#
發(fā)表于 2025-3-31 18:16:18 | 只看該作者
MCGKT-Net: Multi-level Context Gating Knowledge Transfer Network for Single Image Derainingg the knowledge already learned in other task domains. Furthermore, to dynamically select useful features in learning procedure, we propose a multi-scale context gating module in the MCGKT-Net using squeeze-and-excitation block. Experiments on three benchmark datasets: Rain100H, Rain100L, and Rain80
60#
發(fā)表于 2025-3-31 23:17:14 | 只看該作者
Degradation Model Learning for Real-World Single Image Super-Resolutionradation kernel as the weighted combination of the basis kernels. With the learned degradation model, a large number of realistic HR-LR pairs can be easily generated to train a more robust SISR model. Extensive experiments are performed to quantitatively and qualitatively validate the proposed degra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 台东县| 垦利县| 西丰县| 密山市| 思茅市| 马边| 镇康县| 塔河县| 河北省| 凌海市| 延津县| 宜昌市| 临邑县| 吴川市| 和林格尔县| 克什克腾旗| 响水县| 吐鲁番市| 惠来县| 芜湖县| 平武县| 晋中市| 东兰县| 乌拉特前旗| 冀州市| 珠海市| 天津市| 共和县| 新安县| 湖北省| 东阳市| 华坪县| 九江县| 涪陵区| 琼结县| 兴化市| 敖汉旗| 专栏| 神农架林区| 南京市|