找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 太平間
31#
發(fā)表于 2025-3-27 00:37:19 | 只看該作者
0302-9743 , Japan, in November/ December 2020.*.The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; segmentation and grouping..Part II: low-level vision, i
32#
發(fā)表于 2025-3-27 01:32:21 | 只看該作者
33#
發(fā)表于 2025-3-27 07:10:50 | 只看該作者
https://doi.org/10.1007/978-3-319-26047-1iate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
34#
發(fā)表于 2025-3-27 11:28:23 | 只看該作者
Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention NetworkCAB). Several models of different sizes are released to meet various practical requirements. Extensive benchmark experiments show that the proposed models achieve better performance with much fewer multiply-adds and parameters (Source code is at .).
35#
發(fā)表于 2025-3-27 17:19:25 | 只看該作者
An Efficient Group Feature Fusion Residual Network for Image Super-Resolutioniate layers. In this way, GFFRB can enjoy the merits of the lightweight of the group convolution and the high-efficiency of the skip connections, thus achieving better performance compared with most current residual blocks. Experiments on the benchmark test sets show that our models are more efficient than most of the state-of-the-art methods.
36#
發(fā)表于 2025-3-27 18:50:42 | 只看該作者
37#
發(fā)表于 2025-3-27 23:53:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:48:30 | 只看該作者
https://doi.org/10.1007/978-1-349-03555-7ith non-stationary textures remains a challenging task for computer vision. In this paper, a novel approach to image inpainting problem is presented, which adapts exemplar-based methods for deep convolutional neural networks. The concept of . is introduced with the purpose of preserving feature cont
39#
發(fā)表于 2025-3-28 07:38:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜阳县| 沂源县| 丰城市| 梁山县| 奎屯市| 沁源县| 永川市| 榆社县| 舞钢市| 寿阳县| 益阳市| 县级市| 习水县| 伽师县| 潼关县| 邵东县| 梁山县| 贵德县| 商城县| 论坛| 新田县| SHOW| 沧州市| 益阳市| 渭南市| 平谷区| 阳谷县| 博湖县| 高平市| 和顺县| 凌源市| 安陆市| 扎囊县| 伊宁市| 前郭尔| 大石桥市| 湖州市| 清远市| 宁国市| 会泽县| 拉孜县|