找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
21#
發(fā)表于 2025-3-25 04:37:22 | 只看該作者
,Die einfachsten statisch bestimmten Tr?ger,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
22#
發(fā)表于 2025-3-25 11:20:05 | 只看該作者
Einfache lineare Regression — II . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and almost contact metric manifolds.
23#
發(fā)表于 2025-3-25 13:36:49 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:48 | 只看該作者
Ideal CR Submanifolds,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
25#
發(fā)表于 2025-3-25 20:36:09 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:55 | 只看該作者
CR-Submanifolds of Semi-Riemannian Kaehler Manifolds,s compatible with the Hermitian structure, we recall the results on mixed foliate, normal mixed totally geodesic and totally umbilical CR-submanifolds of a Kaehler manifold. Finally, CR-submanifolds have been studied within the frame-work of space-time (in particular, of general relativity).
27#
發(fā)表于 2025-3-26 04:33:36 | 只看該作者
28#
發(fā)表于 2025-3-26 09:02:32 | 只看該作者
https://doi.org/10.1007/978-981-10-0916-7CR-submanifolds; Kaehler manifold; Sasakian manifolds; Cauchy–Riemann structure; Semi-Riemannian submers
29#
發(fā)表于 2025-3-26 14:33:53 | 只看該作者
30#
發(fā)表于 2025-3-26 19:06:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天等县| 天峻县| 饶阳县| 十堰市| 册亨县| 神木县| 安丘市| 许昌市| 建阳市| 柯坪县| 平阳县| 西安市| 常德市| 北安市| 周口市| 乌拉特后旗| 如东县| 金塔县| 辽宁省| 中西区| 兴隆县| 崇义县| 彭山县| 陵川县| 莱西市| 宜宾市| 双江| 苏尼特右旗| 盐源县| 吕梁市| 射阳县| 莱芜市| 都江堰市| 南皮县| 涟水县| 桐庐县| 福安市| 广昌县| 萍乡市| 新郑市| 德庆县|