找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
31#
發(fā)表于 2025-3-26 23:44:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:25:17 | 只看該作者
Planungsrelevante Definitionen, of a manifold with an almost complex structure is CR, by Bejancu, if it has a differentiable holomorphic distribution . such that its orthogonal complement . is a totally real distribution. A CR-submanifolds of . has to be at least three-dimensional, so with disregarding the hypersurfaces which are
33#
發(fā)表于 2025-3-27 08:52:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:25:22 | 只看該作者
,Der Gelenk- oder Gerbertr?ger,uation. We naturally have various dualistic geometric objects on it. In this article, the basics for statistical submanifolds in holomorphic statistical manifolds are given. We define the sectional curvature for a statistical structure, and study CR-submanifolds in a holomorphic statistical manifold
35#
發(fā)表于 2025-3-27 15:01:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:18:07 | 只看該作者
,Die einfachsten statisch bestimmten Tr?ger,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
37#
發(fā)表于 2025-3-27 22:03:00 | 只看該作者
Einfache lineare Regression — II . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
38#
發(fā)表于 2025-3-28 04:46:19 | 只看該作者
Grundbegriffe statistischer Testss compatible with the Hermitian structure, we recall the results on mixed foliate, normal mixed totally geodesic and totally umbilical CR-submanifolds of a Kaehler manifold. Finally, CR-submanifolds have been studied within the frame-work of space-time (in particular, of general relativity).
39#
發(fā)表于 2025-3-28 06:38:34 | 只看該作者
40#
發(fā)表于 2025-3-28 10:40:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴市| 新巴尔虎右旗| 衡水市| 沁阳市| 山丹县| 蓝田县| 盖州市| 竹北市| 应城市| 凤山市| 醴陵市| 翁牛特旗| 叶城县| 阳山县| 沽源县| 常宁市| 汾阳市| 双牌县| 永宁县| 杨浦区| 南雄市| 高台县| 澎湖县| 扎兰屯市| 嘉善县| 齐河县| 马关县| 乡宁县| 通州市| 宁陵县| 德阳市| 都匀市| 灵武市| 皋兰县| 莎车县| 南投县| 白河县| 杂多县| 收藏| 靖州| 连山|