找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
31#
發(fā)表于 2025-3-26 23:44:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:25:17 | 只看該作者
Planungsrelevante Definitionen, of a manifold with an almost complex structure is CR, by Bejancu, if it has a differentiable holomorphic distribution . such that its orthogonal complement . is a totally real distribution. A CR-submanifolds of . has to be at least three-dimensional, so with disregarding the hypersurfaces which are
33#
發(fā)表于 2025-3-27 08:52:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:25:22 | 只看該作者
,Der Gelenk- oder Gerbertr?ger,uation. We naturally have various dualistic geometric objects on it. In this article, the basics for statistical submanifolds in holomorphic statistical manifolds are given. We define the sectional curvature for a statistical structure, and study CR-submanifolds in a holomorphic statistical manifold
35#
發(fā)表于 2025-3-27 15:01:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:18:07 | 只看該作者
,Die einfachsten statisch bestimmten Tr?ger,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
37#
發(fā)表于 2025-3-27 22:03:00 | 只看該作者
Einfache lineare Regression — II . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
38#
發(fā)表于 2025-3-28 04:46:19 | 只看該作者
Grundbegriffe statistischer Testss compatible with the Hermitian structure, we recall the results on mixed foliate, normal mixed totally geodesic and totally umbilical CR-submanifolds of a Kaehler manifold. Finally, CR-submanifolds have been studied within the frame-work of space-time (in particular, of general relativity).
39#
發(fā)表于 2025-3-28 06:38:34 | 只看該作者
40#
發(fā)表于 2025-3-28 10:40:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑水县| 金昌市| 寻乌县| 阿勒泰市| 泰宁县| 任丘市| 紫阳县| 库车县| 达日县| 五华县| 诏安县| 运城市| 玉屏| 兴化市| 西乌| 射阳县| 洪江市| 安达市| 凉山| 桦南县| 沾益县| 荃湾区| 北票市| 安阳市| 安陆市| 加查县| 托里县| 白城市| 阿鲁科尔沁旗| 苏尼特右旗| 滕州市| 托克逊县| 叙永县| 谢通门县| 乌鲁木齐县| 禄丰县| 泸西县| 汕尾市| 峨眉山市| 息烽县| 青州市|