找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry in History; S. G. Dani,Athanase Papadopoulos Book 2019 Springer Nature Switzerland AG 2019 58-02, 58-03, 14-02, 53-02, 77-02, 30D

[復制鏈接]
樓主: corrupt
11#
發(fā)表于 2025-3-23 10:30:44 | 只看該作者
12#
發(fā)表于 2025-3-23 14:13:44 | 只看該作者
,The Poincaré Conjecture and Related Statements,imensional sphere. The statements, results and problems are equivalent forms, corollaries, strengthenings of this conjecture, or problems of a more general nature such as the homeomorphism problem, the manifold recognition problem and the existence problem of some polyhedral, smooth and geometric st
13#
發(fā)表于 2025-3-23 20:11:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:23:13 | 只看該作者
Fortgeschrittene PL/I-Techniken,hat some assertions made by philosophers from Greek antiquity have a definite topological content, even if they were stated more than two and a half millennia before the field of topology was born. He adhered completely to Aristotle’s theory of form which the latter developed especially in his biolo
15#
發(fā)表于 2025-3-24 05:48:22 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:03 | 只看該作者
Einführung in die Programmiersprache SIMULAhe article argues, by the movement from the primacy of geometrical to the primacy of algebraic thinking. The article also explores the ontological and epistemological aspects of this transition and the connections between modernist mathematics and modernist physics, especially quantum theory, in thi
17#
發(fā)表于 2025-3-24 14:34:29 | 只看該作者
18#
發(fā)表于 2025-3-24 18:51:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:30:26 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:03 | 只看該作者
https://doi.org/10.1007/978-3-8348-9640-7ope that this modern take on the old theorems makes this evergreen topic fresh again. We connect configuration theorems to completely integrable systems, identities in Lie algebras of motion, modular group, and other subject of contemporary interest.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
康乐县| 绍兴市| 开封县| 吉林省| 盈江县| 乌拉特前旗| 屏东县| 灵山县| 邵阳县| 博罗县| 柘荣县| 富川| 德保县| 吉水县| 宽城| 娄底市| 漯河市| 秀山| 滕州市| 元朗区| 宁安市| 荥经县| 伊金霍洛旗| 湘乡市| 乌苏市| 正镶白旗| 鄯善县| 乐陵市| 丘北县| 平陆县| 金门县| 孝昌县| 惠来县| 偏关县| 芜湖市| 万盛区| 礼泉县| 河北区| 安阳县| 赣州市| 乐东|