找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry in History; S. G. Dani,Athanase Papadopoulos Book 2019 Springer Nature Switzerland AG 2019 58-02, 58-03, 14-02, 53-02, 77-02, 30D

[復(fù)制鏈接]
樓主: corrupt
21#
發(fā)表于 2025-3-25 03:37:44 | 只看該作者
https://doi.org/10.1007/978-3-642-49191-7ey sound counterintuitive: . Around a decade later, M. Gromov transformed Smale’s idea in what is now known as the .-.. Here, the . stands for ...Shortly after the astonishing discovery by Smale, Thom gave a lecture in Lille (1959) announcing a theorem which would deserve to be named .. The aim of o
22#
發(fā)表于 2025-3-25 09:51:43 | 只看該作者
Einführung in die Quantenchemiedean geometry, we describe some highlights of this subject and threads of its evolution. In particular, we discuss the relationship to the subject of discrete subgroups of Lie groups. We emphasize the classification of geometric structures from the point of view of fiber spaces and the later work of
23#
發(fā)表于 2025-3-25 11:59:44 | 只看該作者
24#
發(fā)表于 2025-3-25 18:01:55 | 只看該作者
https://doi.org/10.1007/978-3-7091-7975-8imensional sphere. The statements, results and problems are equivalent forms, corollaries, strengthenings of this conjecture, or problems of a more general nature such as the homeomorphism problem, the manifold recognition problem and the existence problem of some polyhedral, smooth and geometric st
25#
發(fā)表于 2025-3-25 20:59:54 | 只看該作者
Eingabe von Datenkarten (Standard-Eingabe),We consider several appearances of the notion of convexity in Greek antiquity, more specifically in mathematics and optics, in the writings of Aristotle, and in art.
26#
發(fā)表于 2025-3-26 00:32:36 | 只看該作者
27#
發(fā)表于 2025-3-26 08:17:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:48 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:56:27 | 只看該作者
Einführung in die QuantenphysikThe message of this short survey is that four-dimensional topology is very special indeed. Also, four dimensions is the place where, today, as far as topology of manifolds is concerned, more than anywhere else, there are still big questions waiting to be solved.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济南市| 柞水县| 青川县| 钟祥市| 张家川| 桃园市| 弋阳县| 镇安县| 德化县| 久治县| 汉寿县| 镇康县| 吴堡县| 都江堰市| 临颍县| 平定县| 泗阳县| 紫阳县| 武邑县| 湖北省| 凤山市| 鸡东县| 陆河县| 扎囊县| 兴海县| 山阴县| 南昌县| 山丹县| 富川| 梨树县| 南平市| 旬阳县| 宣汉县| 浪卡子县| 广东省| 会同县| 江津市| 陆河县| 望城县| 若羌县| 临高县|