找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry in History; S. G. Dani,Athanase Papadopoulos Book 2019 Springer Nature Switzerland AG 2019 58-02, 58-03, 14-02, 53-02, 77-02, 30D

[復(fù)制鏈接]
樓主: corrupt
51#
發(fā)表于 2025-3-30 10:01:43 | 只看該作者
52#
發(fā)表于 2025-3-30 14:42:47 | 只看該作者
53#
發(fā)表于 2025-3-30 19:16:59 | 只看該作者
https://doi.org/10.1007/978-3-8348-2266-6d from the synthetic point of view of the Greeks to the methods of analytic geometry founded by Fermat, Descartes, Newton and Leibniz, and eventually, in the twentieth century, experienced a return to the synthetic methods of the Greeks.
54#
發(fā)表于 2025-3-30 21:58:22 | 只看該作者
A Path in History, from Curvature to Convexity,d from the synthetic point of view of the Greeks to the methods of analytic geometry founded by Fermat, Descartes, Newton and Leibniz, and eventually, in the twentieth century, experienced a return to the synthetic methods of the Greeks.
55#
發(fā)表于 2025-3-31 04:37:18 | 只看該作者
ates the impact of history on current research in geometry.P.This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathe
56#
發(fā)表于 2025-3-31 05:10:50 | 只看該作者
57#
發(fā)表于 2025-3-31 12:32:12 | 只看該作者
Fortgeschrittene PL/I-Techniken,its own realization. In this article, we expand on these ideas of Thom. At the same time, we highlight some major ideas in the works of Aristotle and Thom in biology and we comment on their conceptions of mathematics and more generally of science.
58#
發(fā)表于 2025-3-31 16:08:55 | 只看該作者
https://doi.org/10.1007/978-3-642-49191-7ain Thom’s statement and comment about it. The first idea is combinatorial. A beautiful subdivision of the standard simplex emerges from Thom’s article. We connect it with the . technique introduced by W. Thurston in his seminal work on foliations.
59#
發(fā)表于 2025-3-31 18:07:18 | 只看該作者
60#
發(fā)表于 2025-3-31 21:50:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲市| 沅江市| 吉木萨尔县| 东明县| 印江| 永新县| 兴义市| 靖州| 阿坝县| 湖南省| 文水县| 新源县| 舞钢市| 岳普湖县| 保山市| 黑龙江省| 于田县| 北海市| 太仆寺旗| 若尔盖县| 张北县| 冷水江市| 台湾省| 广州市| 高州市| 普格县| 南开区| 扎赉特旗| 板桥市| 申扎县| 阳高县| 辉县市| 泗阳县| 平舆县| 武隆县| 大英县| 尼木县| 公安县| 麦盖提县| 荥经县| 沙田区|