找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry in History; S. G. Dani,Athanase Papadopoulos Book 2019 Springer Nature Switzerland AG 2019 58-02, 58-03, 14-02, 53-02, 77-02, 30D

[復制鏈接]
樓主: corrupt
21#
發(fā)表于 2025-3-25 03:37:44 | 只看該作者
https://doi.org/10.1007/978-3-642-49191-7ey sound counterintuitive: . Around a decade later, M. Gromov transformed Smale’s idea in what is now known as the .-.. Here, the . stands for ...Shortly after the astonishing discovery by Smale, Thom gave a lecture in Lille (1959) announcing a theorem which would deserve to be named .. The aim of o
22#
發(fā)表于 2025-3-25 09:51:43 | 只看該作者
Einführung in die Quantenchemiedean geometry, we describe some highlights of this subject and threads of its evolution. In particular, we discuss the relationship to the subject of discrete subgroups of Lie groups. We emphasize the classification of geometric structures from the point of view of fiber spaces and the later work of
23#
發(fā)表于 2025-3-25 11:59:44 | 只看該作者
24#
發(fā)表于 2025-3-25 18:01:55 | 只看該作者
https://doi.org/10.1007/978-3-7091-7975-8imensional sphere. The statements, results and problems are equivalent forms, corollaries, strengthenings of this conjecture, or problems of a more general nature such as the homeomorphism problem, the manifold recognition problem and the existence problem of some polyhedral, smooth and geometric st
25#
發(fā)表于 2025-3-25 20:59:54 | 只看該作者
Eingabe von Datenkarten (Standard-Eingabe),We consider several appearances of the notion of convexity in Greek antiquity, more specifically in mathematics and optics, in the writings of Aristotle, and in art.
26#
發(fā)表于 2025-3-26 00:32:36 | 只看該作者
27#
發(fā)表于 2025-3-26 08:17:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:48 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:56:27 | 只看該作者
Einführung in die QuantenphysikThe message of this short survey is that four-dimensional topology is very special indeed. Also, four dimensions is the place where, today, as far as topology of manifolds is concerned, more than anywhere else, there are still big questions waiting to be solved.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新丰县| 黔西县| 应城市| 郁南县| 肇源县| 通河县| 元谋县| 温州市| 建瓯市| 苍南县| 乌兰浩特市| 门源| 唐河县| 山丹县| 元氏县| 武清区| 称多县| 自贡市| 崇阳县| 密山市| 昆明市| 禹州市| 泗阳县| 双江| 江永县| 宜春市| 神池县| 铜梁县| 金华市| 车致| 璧山县| 原平市| 中方县| 陕西省| 安陆市| 白水县| 吴桥县| 胶州市| 阿图什市| 兴仁县| 和平区|