找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[復(fù)制鏈接]
樓主: probiotic
61#
發(fā)表于 2025-4-1 04:02:58 | 只看該作者
,Mahler’s Classification of Numbers Compared with Koksma’s, II,lgebraic numbers. Following Mahler [.], for any integer . ≥ 1, we denote by w.(ξ) the supremum of the exponents . for which . has infinitely many solutions in integer polynomials P(.) of degree at most . Here, H(.) stands for the na?ve height of the polynomial P(.), that is, the maximum of the absol
62#
發(fā)表于 2025-4-1 07:19:59 | 只看該作者
63#
發(fā)表于 2025-4-1 11:16:50 | 只看該作者
Applications of the Subspace Theorem to Certain Diophantine Problems, 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
64#
發(fā)表于 2025-4-1 16:22:46 | 只看該作者
65#
發(fā)表于 2025-4-1 22:02:08 | 只看該作者
66#
發(fā)表于 2025-4-1 23:44:51 | 只看該作者
67#
發(fā)表于 2025-4-2 06:13:53 | 只看該作者
Counting Algebraic Numbers with Large Height I,r . and real number ., it is well known that the number . of points α in . having degree . over ? and satisfying . is finite. This is the one-dimensional case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher
68#
發(fā)表于 2025-4-2 08:30:32 | 只看該作者
69#
發(fā)表于 2025-4-2 11:34:03 | 只看該作者
On the Continued Fraction Expansion of a Class of Numbers,al reference is Chapter I of [10]). If ξ is irrational, then, by letting . tend to infinity, this provides infinitely many rational numbers ../x. with |ξ - x./x...... By contrast, an irrational real number ξ is said to be . if there exists a constant c. > 0 suchthat |ξ - ..... for each .. or,equival
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 19:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁南县| 惠水县| 万盛区| 太仆寺旗| 福安市| 霍城县| 石狮市| 荆州市| 叙永县| 灵台县| 安远县| 长沙县| 庄河市| 旬阳县| 定陶县| 西乌| 封开县| 石狮市| 峨眉山市| 内黄县| 广灵县| 渝中区| 滨海县| 吉木萨尔县| 宣恩县| 吉木乃县| 城口县| 偏关县| 合山市| 阜康市| 蓬莱市| 琼结县| 晋城| 桐城市| 安康市| 迭部县| 蛟河市| 清新县| 萨迦县| 沈阳市| 佛冈县|