找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[復(fù)制鏈接]
樓主: probiotic
51#
發(fā)表于 2025-3-30 08:45:12 | 只看該作者
A Typology of Spatial Econometric Modelsmbers can also be described as those ξ ∈ ? ? for which the result of Dirichlet can be improved in the sense that there exists a constant c. < 1 such that the inequalities 1 ≤ x. ≤ . |x.ξ ... c.X. admit a solution (x., x.) ∈ ?. for each sufficiently large . (see Theorem 1 of [2]).
52#
發(fā)表于 2025-3-30 16:09:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:40:10 | 只看該作者
54#
發(fā)表于 2025-3-31 00:26:29 | 只看該作者
55#
發(fā)表于 2025-3-31 04:08:13 | 只看該作者
Applications of the Subspace Theorem to Certain Diophantine Problems,c numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximations to given hyperplanes in higher dimensional space, defined over the field of algebraic numbers, by means of rational points in that space.
56#
發(fā)表于 2025-3-31 06:26:39 | 只看該作者
57#
發(fā)表于 2025-3-31 11:35:42 | 只看該作者
Counting Algebraic Numbers with Large Height I,nal case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher dimensions, was begun by Schmidt [.]. It is relatively easy to prove the existence of a positive constant . such that . and also the existence of positive constants . and . such that
58#
發(fā)表于 2025-3-31 13:45:19 | 只看該作者
59#
發(fā)表于 2025-3-31 21:07:29 | 只看該作者
,Sch?ffer’s Determinant Argument,ied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ?.: . > C., 1 ≤ . ≤ .
60#
發(fā)表于 2025-3-31 21:55:13 | 只看該作者
Arithmetic Progressions and Tic-Tac-Toe Games,search paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 19:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治多县| 吉安市| 邹平县| 班戈县| 曲水县| 萨迦县| 黄冈市| 嘉定区| 汾阳市| 叙永县| 正镶白旗| 桦川县| 沙坪坝区| 伊金霍洛旗| 安溪县| 启东市| 九江县| 札达县| 丰县| 丰镇市| 布尔津县| 平利县| 白河县| 温泉县| 清新县| 大名县| 蓝山县| 城口县| 湟源县| 临江市| 安乡县| 武山县| 渑池县| 理塘县| 中山市| 岗巴县| 平舆县| 海盐县| 常德市| 鹤壁市| 常宁市|