找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[復(fù)制鏈接]
查看: 44285|回復(fù): 68
樓主
發(fā)表于 2025-3-21 16:44:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Diophantine Approximation
副標(biāo)題Festschrift for Wolf
編輯Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic
視頻videohttp://file.papertrans.cn/281/280530/280530.mp4
概述Current information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.
叢書(shū)名稱Developments in Mathematics
圖書(shū)封面Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver
描述This volume contains 22 research and survey papers on recent developments in the field of diophantine approximation. The first article by Hans Peter Schlickewei is devoted to the scientific work of Wolfgang Schmidt. Further contributions deal with the subspace theorem and its applications to diophantine equations and to the study of linear recurring sequences. The articles are either in the spirit of more classical diophantine analysis or of geometric or combinatorial flavor. In particular, estimates for the number of solutions of diophantine equations as well as results concerning congruences and polynomials are established. Furthermore, the volume contains transcendence results for special functions and contributions to metric diophantine approximation and to discrepancy theory. The articles are based on lectures given at a conference at the Erwin Schr6dinger Institute in Vienna in 2003, in which many leading experts in the field of diophantine approximation participated. The editors are very grateful to the Erwin Schr6dinger Institute and to the FWF (Austrian Science Fund) for the financial support and they express their particular thanks to Springer-Verlag for the excellent coo
出版日期Conference proceedings 2008
關(guān)鍵詞Algebra; Diophantine; Diophantine approximation; Festschrift; Number Theory; Tichy; Wolfgang Schmidt; conti
版次1
doihttps://doi.org/10.1007/978-3-211-74280-8
isbn_softcover978-3-211-99909-7
isbn_ebook978-3-211-74280-8Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer-Verlag Vienna 2008
The information of publication is updating

書(shū)目名稱Diophantine Approximation影響因子(影響力)




書(shū)目名稱Diophantine Approximation影響因子(影響力)學(xué)科排名




書(shū)目名稱Diophantine Approximation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Diophantine Approximation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Diophantine Approximation被引頻次




書(shū)目名稱Diophantine Approximation被引頻次學(xué)科排名




書(shū)目名稱Diophantine Approximation年度引用




書(shū)目名稱Diophantine Approximation年度引用學(xué)科排名




書(shū)目名稱Diophantine Approximation讀者反饋




書(shū)目名稱Diophantine Approximation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:32 | 只看該作者
Hans Peter Schlickewei,Klaus Schmidt,Robert F. TicCurrent information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.
地板
發(fā)表于 2025-3-22 07:40:51 | 只看該作者
Developments in Mathematicshttp://image.papertrans.cn/e/image/280530.jpg
5#
發(fā)表于 2025-3-22 10:04:31 | 只看該作者
Introduction: Urban Developmentied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ?.: . > C., 1 ≤ . ≤ .
6#
發(fā)表于 2025-3-22 13:03:46 | 只看該作者
Introduction: Urban Developmentsearch paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
7#
發(fā)表于 2025-3-22 17:11:19 | 只看該作者
8#
發(fā)表于 2025-3-23 00:31:50 | 只看該作者
Adil Mohammed Khan,Ishrat Islam L.-discrepancy . where for every . = (y.,..., . .) ∈ . ., the local discrepancy . is given by . Here . is a rectangular box of volume vol . y1... . ., and #(.) denotes the number of points of a set ., counted with multiplicity.
9#
發(fā)表于 2025-3-23 05:08:07 | 只看該作者
Introduction: Regional Resources 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
10#
發(fā)表于 2025-3-23 07:12:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 22:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝阳县| 高邮市| 牟定县| 临海市| 霞浦县| 陕西省| 左权县| 芮城县| 巩义市| 洮南市| 韶山市| 文山县| 乾安县| 平凉市| 利川市| 河北省| 合阳县| 理塘县| 兴城市| 景泰县| 电白县| 塔城市| 偃师市| 若尔盖县| 汾阳市| 揭阳市| 治多县| 内黄县| 德惠市| 和田县| 岳阳市| 台南县| 南岸区| 加查县| 两当县| 曲水县| 桐庐县| 桐城市| 奉化市| 崇仁县| 济阳县|