找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
51#
發(fā)表于 2025-3-30 10:47:32 | 只看該作者
https://doi.org/10.1007/978-3-642-85278-7rs appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.
52#
發(fā)表于 2025-3-30 14:19:15 | 只看該作者
53#
發(fā)表于 2025-3-30 20:10:11 | 只看該作者
54#
發(fā)表于 2025-3-30 22:26:22 | 只看該作者
55#
發(fā)表于 2025-3-31 01:09:24 | 只看該作者
Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ?, then Jacobi’s princi
56#
發(fā)表于 2025-3-31 08:55:47 | 只看該作者
Action-Angle Variables,, ..) is the generator of a canonical transformation to new constant momenta .., (all .., are ignorable), and the new Hamiltonian depends only on the ..,: . = . = .(..). Besides, the following canonical equations are valid:
57#
發(fā)表于 2025-3-31 09:40:08 | 只看該作者
Time-Independent Canonical Perturbation Theory, conservative, ?./?. = 0, and periodic in both the unperturbed and perturbed case. In addition to periodicity, we shall require the Hamilton-Jacobi equation to be separable for the unperturbed situation. The unperturbed problem ..(..) which is described by the action-angle variables .. and .. will b
58#
發(fā)表于 2025-3-31 17:03:52 | 只看該作者
Removal of Resonances,rs appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.
59#
發(fā)表于 2025-3-31 21:27:39 | 只看該作者
60#
發(fā)表于 2025-4-1 01:44:08 | 只看該作者
The KAM Theorem,rator .(.,., ..) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
集贤县| 垦利县| 新龙县| 内乡县| 乌海市| 彩票| 蛟河市| 思南县| 津南区| 林周县| 全南县| 临桂县| 砀山县| 陆丰市| 长宁区| 兴仁县| 堆龙德庆县| 盘山县| 汝阳县| 白银市| 镇赉县| 杭州市| 南丹县| 东乌| 固原市| 钟山县| 皋兰县| 武定县| 民权县| 焉耆| 馆陶县| 连云港市| 阿尔山市| 牡丹江市| 屏南县| 亚东县| 南京市| 贡山| 永善县| 马尔康县| 观塘区|