找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
31#
發(fā)表于 2025-3-27 00:32:50 | 只看該作者
Behavioural Physiology of Farm Mammals,We extend the perturbation theory of the previous chapter by going one order further and permitting several degrees of freedom. So let the unperturbed problem ..(..) be solved. Then we expand the perturbed Hamiltonian in the (.., ..)-“basis” according to
32#
發(fā)表于 2025-3-27 03:18:25 | 只看該作者
https://doi.org/10.1007/978-3-642-85278-7In the present chapter we are concerned with systems, the change of which — with the exception of a single degree of freedom — should proceed slowly. (Compare the pertinent remarks about ε as slow parameter in Chap. 7.) Accordingly, the Hamiltonian reads:
33#
發(fā)表于 2025-3-27 07:51:10 | 只看該作者
34#
發(fā)表于 2025-3-27 12:47:26 | 只看該作者
35#
發(fā)表于 2025-3-27 17:24:59 | 只看該作者
https://doi.org/10.1007/978-94-009-1145-1We now want to compute the kernel .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
36#
發(fā)表于 2025-3-27 19:25:18 | 只看該作者
Introduction,The subject of this monograph is classical and quantum dynamics. We are fully aware that this combination is somewhat unusual, for history has taught us convincingly that these two subjects are founded on totally different concepts; a smooth transition between them has so far never been made and probably never will.
37#
發(fā)表于 2025-3-28 01:28:47 | 只看該作者
The Action Principles in Mechanics,We begin this chapter with the definition of the action functional as time integral over the Lagrangian ..., ... of a dynamical system:
38#
發(fā)表于 2025-3-28 04:29:36 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:44 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:03 | 只看該作者
Canonical Transformations,Let .., ..,..., .., .....,..... be 2. independent canonical variables, which satisfy Hamilton’s equations:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹县| 枝江市| 无为县| 瑞丽市| 绍兴市| 伊通| 左云县| 临沂市| 勃利县| 德清县| 朝阳市| 壶关县| 平安县| 玉溪市| 吉林市| 桓仁| 富锦市| 阳东县| 积石山| 西峡县| 阿克陶县| 大竹县| 达尔| 西乌珠穆沁旗| 仙游县| 沙雅县| 尤溪县| 甘洛县| 花莲市| 启东市| 嵩明县| 盐山县| 磐石市| 彰武县| 九江县| 云浮市| 两当县| 肥乡县| 土默特左旗| 垦利县| 钟祥市|