找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
41#
發(fā)表于 2025-3-28 17:10:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:29:33 | 只看該作者
The Adiabatic Invariance of the Action Variables,We shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity ... Let gravitation be neglected, and the collisions with the walls be elastic. If .. denotes the average force onto each wall, then we have
43#
發(fā)表于 2025-3-29 02:50:24 | 只看該作者
44#
發(fā)表于 2025-3-29 03:23:19 | 只看該作者
45#
發(fā)表于 2025-3-29 09:02:16 | 只看該作者
Superconvergent Perturbation Theory, KAM Theorem (Introduction),Here we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
46#
發(fā)表于 2025-3-29 12:11:48 | 只看該作者
47#
發(fā)表于 2025-3-29 17:32:52 | 只看該作者
Examples for Calculating Path Integrals,We now want to compute the kernel .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
48#
發(fā)表于 2025-3-29 22:43:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:45:28 | 只看該作者
Yichao Lu,Ruihai Dong,Barry Smythparticular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ?, then Jacobi’s principle states:
50#
發(fā)表于 2025-3-30 06:49:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特左旗| 宜兰市| 遂川县| 洱源县| 宜君县| 五原县| 南川市| 连南| 昌宁县| 平顶山市| 荆门市| 马龙县| 信丰县| 凌海市| 邢台县| 香格里拉县| 庆阳市| 会理县| 丹阳市| 丹寨县| 石林| 旌德县| 化隆| 南乐县| 察雅县| 合川市| 屏东县| 德惠市| 固始县| 西乡县| 全州县| 绵阳市| 子长县| 泽普县| 滨海县| 德昌县| 花垣县| 黄冈市| 永丰县| 涿州市| 赣榆县|