找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing – ICAISC 2008; 9th International Co Leszek Rutkowski,Ryszard Tadeusiewicz,Jacek M. Zur Conferenc

[復(fù)制鏈接]
樓主: Extraneous
21#
發(fā)表于 2025-3-25 07:20:39 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:56 | 只看該作者
Developing Role Clarity and Self-Image,urate but computationally expensive Monte Carlo simulation used to train a neural net. Once trained the neural net can efficiently provide functional analysis and reliability predictions. No restriction on the system structure and on any kind of distribution is the main advantage of the proposed app
23#
發(fā)表于 2025-3-25 14:01:27 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:02 | 只看該作者
Facilitating the Genetic Counseling Processorks for municipal creditworthiness classification. The model is composed of Kohonen’s Self-organizing Feature Maps (unsupervised learning) whose outputs represent the input of the Learning Vector Quantization neural networks (supervised learning).
25#
發(fā)表于 2025-3-25 20:01:41 | 只看該作者
Listening to Clients: Attending Skills,nted. The method proposed represents high speed of operation and outlier robustness. It allows easy reduction of network structure following its training process. The paper presents also the ways of applying the method to modelling of dynamic controlled systems. It is very easy to prepare a program which would allow to use the procedure proposed.
26#
發(fā)表于 2025-3-26 01:43:03 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:18 | 只看該作者
28#
發(fā)表于 2025-3-26 10:42:41 | 只看該作者
29#
發(fā)表于 2025-3-26 15:41:28 | 只看該作者
Facilitating the Genetic Counseling ProcessIn this paper we present a parallel realisation of Real-Time Recurrent Network (RTRN) learning algorithm. We introduce the cuboid architecture to parallelise computation of learning algorithms. Parallel neural network structures are explicitly presented and the performance discussion is included.
30#
發(fā)表于 2025-3-26 20:10:23 | 只看該作者
Parallel Realisation of the Recurrent RTRN Neural Network LearningIn this paper we present a parallel realisation of Real-Time Recurrent Network (RTRN) learning algorithm. We introduce the cuboid architecture to parallelise computation of learning algorithms. Parallel neural network structures are explicitly presented and the performance discussion is included.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太保市| 双江| 丹阳市| 江油市| 安徽省| 香港 | 应用必备| 衡南县| 沂南县| 金华市| 磴口县| 洛南县| 清流县| 林芝县| 汶上县| 曲松县| 寿光市| 泸西县| 威宁| 南部县| 邢台县| 恩施市| 儋州市| 喀喇沁旗| 乾安县| 高陵县| 贡觉县| 巴彦淖尔市| 马边| 缙云县| 雅安市| 理塘县| 甘德县| 河曲县| 乌拉特中旗| 东安县| 华阴市| 余庆县| 青河县| 酒泉市| 深州市|