找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing – ICAISC 2008; 9th International Co Leszek Rutkowski,Ryszard Tadeusiewicz,Jacek M. Zur Conferenc

[復(fù)制鏈接]
樓主: Extraneous
31#
發(fā)表于 2025-3-26 23:14:30 | 只看該作者
32#
發(fā)表于 2025-3-27 04:07:32 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:45 | 只看該作者
34#
發(fā)表于 2025-3-27 12:17:43 | 只看該作者
Input Signals Normalization in Kohonen Neural Networksons, is proposed. The Kohonen neural networks are considered as classifying systems. The main topic of this paper is proposal of applying stereographic projection as an input signals normalization procedure. Both theoretical justification is discussed and results of experiments are presented. It tur
35#
發(fā)表于 2025-3-27 15:47:59 | 只看該作者
36#
發(fā)表于 2025-3-27 21:19:41 | 只看該作者
The Influence of Training Data Availability Time on Effectiveness of ANN Adaptation Processve data in time still tuning themselves. In opposite to them ANNs usually work on the training data (TD) acquired in the past and are totally available at the beginning of the adaptation process. Because of this the adaptation methods of the ANNs can be sometimes more effective than the natural trai
37#
發(fā)表于 2025-3-27 23:14:34 | 只看該作者
WWW-Newsgroup-Document Clustering by Means of Dynamic Self-organizing Neural Networksional WWW-newsgroup-document clustering problem. The collection of 19 997 documents (e-mail messages of different . newsgroups) available at WWW server of the School of Computer Science, Carnegie Mellon University (www.cs.cmu.edu/ TextLearning/datasets.html) has been the subject of clustering. A bro
38#
發(fā)表于 2025-3-28 04:31:37 | 只看該作者
Municipal Creditworthiness Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networorks for municipal creditworthiness classification. The model is composed of Kohonen’s Self-organizing Feature Maps (unsupervised learning) whose outputs represent the input of the Learning Vector Quantization neural networks (supervised learning).
39#
發(fā)表于 2025-3-28 06:39:29 | 只看該作者
Fast and Robust Way of Learning the Fourier Series Neural Networks on the Basis of Multidimensional nted. The method proposed represents high speed of operation and outlier robustness. It allows easy reduction of network structure following its training process. The paper presents also the ways of applying the method to modelling of dynamic controlled systems. It is very easy to prepare a program
40#
發(fā)表于 2025-3-28 10:59:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
友谊县| 绥滨县| 若羌县| 望都县| 东至县| 辽阳市| 方正县| 衡南县| 贡嘎县| 喀喇| 平泉县| 基隆市| 韶山市| 肇州县| 滦平县| 铜鼓县| 增城市| 轮台县| 陵川县| 桑植县| 宁国市| 衡东县| 镇原县| 溧水县| 屏东市| 安义县| 开平市| 彭州市| 永清县| 灯塔市| 华安县| 饶平县| 钟山县| 个旧市| 定襄县| 大港区| 财经| 田东县| 弥勒县| 鄂州市| 桓台县|