找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing – ICAISC 2008; 9th International Co Leszek Rutkowski,Ryszard Tadeusiewicz,Jacek M. Zur Conferenc

[復(fù)制鏈接]
樓主: Extraneous
21#
發(fā)表于 2025-3-25 07:20:39 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:56 | 只看該作者
Developing Role Clarity and Self-Image,urate but computationally expensive Monte Carlo simulation used to train a neural net. Once trained the neural net can efficiently provide functional analysis and reliability predictions. No restriction on the system structure and on any kind of distribution is the main advantage of the proposed app
23#
發(fā)表于 2025-3-25 14:01:27 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:02 | 只看該作者
Facilitating the Genetic Counseling Processorks for municipal creditworthiness classification. The model is composed of Kohonen’s Self-organizing Feature Maps (unsupervised learning) whose outputs represent the input of the Learning Vector Quantization neural networks (supervised learning).
25#
發(fā)表于 2025-3-25 20:01:41 | 只看該作者
Listening to Clients: Attending Skills,nted. The method proposed represents high speed of operation and outlier robustness. It allows easy reduction of network structure following its training process. The paper presents also the ways of applying the method to modelling of dynamic controlled systems. It is very easy to prepare a program which would allow to use the procedure proposed.
26#
發(fā)表于 2025-3-26 01:43:03 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:18 | 只看該作者
28#
發(fā)表于 2025-3-26 10:42:41 | 只看該作者
29#
發(fā)表于 2025-3-26 15:41:28 | 只看該作者
Facilitating the Genetic Counseling ProcessIn this paper we present a parallel realisation of Real-Time Recurrent Network (RTRN) learning algorithm. We introduce the cuboid architecture to parallelise computation of learning algorithms. Parallel neural network structures are explicitly presented and the performance discussion is included.
30#
發(fā)表于 2025-3-26 20:10:23 | 只看該作者
Parallel Realisation of the Recurrent RTRN Neural Network LearningIn this paper we present a parallel realisation of Real-Time Recurrent Network (RTRN) learning algorithm. We introduce the cuboid architecture to parallelise computation of learning algorithms. Parallel neural network structures are explicitly presented and the performance discussion is included.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凯里市| 松溪县| 尤溪县| 陵川县| 潞西市| 贺兰县| 阳高县| 临湘市| 隆回县| 外汇| 房产| 江华| 边坝县| 罗江县| 丹东市| 佛教| 大田县| 吉木乃县| 策勒县| 洛扎县| 瑞昌市| 元氏县| 融水| 上栗县| 天长市| 徐汇区| 鸡泽县| 宁国市| 北京市| 龙胜| 阳江市| 东乡县| 独山县| 仪陇县| 巨鹿县| 山阴县| 大关县| 云阳县| 周宁县| 康平县| 庄浪县|