找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing – ICAISC 2008; 9th International Co Leszek Rutkowski,Ryszard Tadeusiewicz,Jacek M. Zur Conferenc

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 10:05:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:38:52 | 只看該作者
Facilitating the Genetic Counseling Processotor flux reference frame. Two approaches are considered: data mining with GMDH algorithm and gradual training of the NN in the desired frequency range. In both cases the accuracy of the estimator is significantly improved. Provided tests confirmed this feature and encourage to implement such an est
13#
發(fā)表于 2025-3-23 19:21:33 | 只看該作者
Listening to Clients: Attending Skills,ets, which contain the data from clinical studies following patients response for a given treatment. Such datasets may contain incomplete (censored) information on patients failure times. The proposed method is able to cope with censored observations and as the result returns the aggregated Kaplan-M
14#
發(fā)表于 2025-3-23 22:29:07 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:30 | 只看該作者
Facilitating the Genetic Counseling Processsk minimization and complexity regularization. We study convergence of the RBF networks for various radial kernels as the number of training samples increases. The rates of convergence are also examined.
16#
發(fā)表于 2025-3-24 09:56:32 | 只看該作者
Facilitating the Genetic Counseling Processroblem) and a steady-state one (for the economic optimisation subproblem). The algorithm is computationally efficient because it needs solving on-line only one quadratic programming problem. Unlike the classical control system structure, the necessity of repeating two nonlinear optimisation problems
17#
發(fā)表于 2025-3-24 13:51:03 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:37 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:11 | 只看該作者
20#
發(fā)表于 2025-3-25 01:20:39 | 只看該作者
Facilitating the Genetic Counseling Processormance. In this paper a new, robust to outliers learning algorithm, employing the concept of initial data analysis by the MCD (minimum covariance determinant) estimator, is proposed. Results of implementation and simulation of nets trained with the new algorithm and the traditional backpropagation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铁岭市| 武定县| 天峻县| 清丰县| 潞城市| 新源县| 邵阳市| 阿尔山市| 南汇区| 三原县| 瑞昌市| 财经| 平塘县| 通化市| 南康市| 庄浪县| 响水县| 陕西省| 东宁县| 温泉县| 绍兴市| 北票市| 凉城县| 通山县| 晋州市| 林甸县| 赣州市| 阿拉善盟| 包头市| 桂阳县| 姚安县| 兴安县| 古交市| 滨州市| 武穴市| 罗江县| 铜川市| 平顶山市| 平塘县| 万安县| 巫溪县|