找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Schwarz-Pick Type Inequalities; Farit G. Avkhadiev,Karl-Joachim Wirths Book 2009 Birkh?user Basel 2009 Area.Factor.Lemma.Schwarz lemma.ana

[復(fù)制鏈接]
樓主: 佯攻
31#
發(fā)表于 2025-3-26 23:42:49 | 只看該作者
978-3-7643-9999-3Birkh?user Basel 2009
32#
發(fā)表于 2025-3-27 02:42:27 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:10 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:05 | 只看該作者
Basic Schwarz-Pick type inequalities,Let Ω ? . and п ? . be two domains equipped by the Poincaré metric. We are concerned with the set . of functions locally holomorphic or meromorphic in Ω and, in general, multivalued. Let λ. (.), . ∈ Ω, and λп (.), . ∈ п, denote the density of the Poincaré metric at . ∈ Ω and . ∈ п, respectively.
35#
發(fā)表于 2025-3-27 14:26:40 | 只看該作者
Multiply connected domains,In the preceding chapters we considered punishing factors for simply connected domains, except the case C.(Ω,п). Namely, in Section 4.6 it was proved that for all hyperbolic domains Ω ? . and п ? .
36#
發(fā)表于 2025-3-27 21:25:55 | 只看該作者
Related results,First, we will give an outline of the ideas and results that led to the conjectures of Chua. To our knowledge, E. Landau was the first who considered the possibility to follow G. Pick’s program as indicated in the introduction for the higher derivatives of schlicht functions. He proved the following theorem (compare Landau [98], Gong [71]).
37#
發(fā)表于 2025-3-27 23:52:26 | 只看該作者
38#
發(fā)表于 2025-3-28 03:08:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:44:01 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:15 | 只看該作者
Michelle J. Bellino,James H. WilliamsThe collection brings together diverse contemporary and historical cases of curricula, educational practice, and policy as implemented in conflict-affected and post-conflict contexts; these empirical
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 渝中区| 衡山县| 海林市| 平果县| 阿鲁科尔沁旗| 丰原市| 星子县| 宣武区| 永嘉县| 岫岩| 花垣县| 历史| 宜丰县| 尼勒克县| 荆州市| 张家界市| 浦城县| 崇左市| 鄂伦春自治旗| 昂仁县| 景德镇市| 深水埗区| 祁连县| 大埔县| 宁河县| 营山县| 宁武县| 巫山县| 庆城县| 临西县| 桓台县| 商河县| 云霄县| 南川市| 六枝特区| 建昌县| 威海市| 池州市| 马山县| 廉江市|