找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Schwarz-Pick Type Inequalities; Farit G. Avkhadiev,Karl-Joachim Wirths Book 2009 Birkh?user Basel 2009 Area.Factor.Lemma.Schwarz lemma.ana

[復(fù)制鏈接]
樓主: 佯攻
21#
發(fā)表于 2025-3-25 06:43:43 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:39 | 只看該作者
Basic coefficient inequalities, Goluzin [70], Goodman [73], Hayman [78], Pommerenke [128], and Duren [60]. In this chapter we only mention a few classical results on coefficients which are closely connected with the topic of this book. Also, we give several new facts with short proofs that have until now been presented only in or
23#
發(fā)表于 2025-3-25 13:12:04 | 只看該作者
Punishing factors for special cases,look at (5.1) in the following way. The quotient (λΩ(.))./λп(.) reflects the influence of the positions of the points . and . in Ω and ∏ on the nth derivative .(.), whereas the quantities C.(Ω, п) are factors punishing bad behaviour of Ω or ? at the boundary. This motivates the title of the present
24#
發(fā)表于 2025-3-25 19:51:01 | 只看該作者
Some open problems,ains are involved. From this point of view, it seems natural that the difficulties become nearly insuperable, if one allows the points . ∈ Ω or .) ∈ п, or both to vary, and asks for the maximum. Nevertheless, there exists one problem of this type that has attracted researchers for many years because
25#
發(fā)表于 2025-3-25 22:42:05 | 只看該作者
26#
發(fā)表于 2025-3-26 01:50:38 | 只看該作者
Introduction,ional condition we impose on these functions is the condition that the range .(Ω) is contained in a given domain ∏ ? .. This fact will be denoted by . ∈ .(Ω, п). We shall describe how one may get estimates for the derivatives |. (.)|, . ∈ ?, . ∈ . (Ω, ∏) dependent on the position of . in Ω and .(z.) in п.
27#
發(fā)表于 2025-3-26 04:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 10:50:55 | 只看該作者
1660-8046 the several analytic methods, readers will find many interes.This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent?results?in geometri
29#
發(fā)表于 2025-3-26 14:57:17 | 只看該作者
30#
發(fā)表于 2025-3-26 18:55:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐平市| 乌什县| 宣威市| 军事| 合阳县| 黄平县| 垫江县| 故城县| 岐山县| 宜兴市| 无锡市| 石景山区| 博白县| 北辰区| 灵璧县| 安龙县| 固原市| 四川省| 乌拉特中旗| 永兴县| 丁青县| 确山县| 固镇县| 满城县| 阳春市| 平南县| 南昌市| 九龙城区| 永平县| 高州市| 公安县| 固安县| 板桥市| 子洲县| 武川县| 砀山县| 庆云县| 宜章县| 敖汉旗| 文昌市| 英山县|