找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds; David E. Blair Book 2010Latest edition Springer Science+Business Media LLC 2010 D

[復(fù)制鏈接]
樓主: 去是公開
21#
發(fā)表于 2025-3-25 06:56:42 | 只看該作者
https://doi.org/10.1007/978-0-8176-4959-3Differential Geometry; Differential Topology; Manifolds; Riemannian geometry; curvature; manifold; symplec
22#
發(fā)表于 2025-3-25 09:51:03 | 只看該作者
Contact Manifolds,In this chapter we give the basic definitions and properties concerning contact manifolds both as given by a global contact form and as a contact structure in the wider sense. We then give many examples of contact manifolds, a discussion of the celebrated Boothby–Wang fibration, and a discussion of the Weinstein conjecture.
23#
發(fā)表于 2025-3-25 13:26:48 | 只看該作者
24#
發(fā)表于 2025-3-25 19:46:36 | 只看該作者
Curvature of Contact Metric Manifolds,In this chapter we discuss many aspects of the curvature of contact metric manifolds. As such, it is to be regarded as one of the most important chapters in this book.
25#
發(fā)表于 2025-3-25 21:25:25 | 只看該作者
,Submanifolds of K?hler and Sasakian Manifolds,In this chapter we study submanifolds in both contact and K?hler geometry. These are extensive subjects in their own right, and we give only a few basic results.
26#
發(fā)表于 2025-3-26 02:44:24 | 只看該作者
27#
發(fā)表于 2025-3-26 05:27:28 | 只看該作者
Complex Contact Manifolds,While the study of complex contact manifolds is almost as old as the modern theory of real contact manifolds, the subject has received much less attention, and since many examples are now appearing in the literature, we devote this and the next chapter to the subject.
28#
發(fā)表于 2025-3-26 09:54:22 | 只看該作者
3-Sasakian Manifolds,In this chapter we will give more of a survey of 3-Sasakian manifolds and only a few proofs. A more thorough treatment is given in the book by Boyer and Galicki [2008, Chapter 13].
29#
發(fā)表于 2025-3-26 14:21:52 | 只看該作者
30#
發(fā)表于 2025-3-26 18:40:00 | 只看該作者
Symplectic Manifolds,lectic manifolds and make brief mention of “associated metrics”, a topic that will be thoroughly discussed in Chapter 4. Here we treat in detail Lagrangian submanifolds and theorems of Darboux and Weinstein on the local structure of a symplectic manifold. We end this chapter with a brief discussion of symplectomorphisms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 08:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温宿县| 吴江市| 改则县| 黄平县| 平乐县| 榕江县| 通榆县| 陈巴尔虎旗| 昌图县| 白河县| 岳阳县| 嵊州市| 台东县| 南城县| 库尔勒市| 聂荣县| 获嘉县| 三河市| 聂拉木县| 镇远县| 武夷山市| 沂水县| 体育| 丽水市| 新巴尔虎左旗| 昌平区| 泰宁县| 德保县| 丘北县| 临汾市| 安康市| 崇信县| 南乐县| 融水| 蒙城县| 枞阳县| 澄江县| 育儿| 翁牛特旗| 景谷| 昌黎县|