找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds; David E. Blair Book 2010Latest edition Springer Science+Business Media LLC 2010 D

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:14:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:13:02 | 只看該作者
Associated Metrics,ization. We also discuss the action of symplectic and contact transformations on associated metrics. Some of our discussion is broader, dealing with almost Hermitian and almost contact metric structures. The chapter closes with several examples.
14#
發(fā)表于 2025-3-24 01:48:22 | 只看該作者
Sasakian and Cosymplectic Manifolds,lso introduce another important structure tensor, ., which will be useful in the study of non-Sasakian contact metric manifolds. As an additional topic, cosymplectic manifolds will be discussed in some detail. We also give several examples and additional commentary.
15#
發(fā)表于 2025-3-24 05:18:37 | 只看該作者
Tangent Bundles and Tangent Sphere Bundles, a more general construction on vector bundles and in Section 4 specialize to the case of the normal bundle of a submanifold. The formalism for the tangent bundle and the tangent sphere bundle is of sufficient importance to warrant its own development, rather than specializing from the vector bundle
16#
發(fā)表于 2025-3-24 07:28:37 | 只看該作者
Curvature Functionals on Spaces of Associated Metrics,ct manifolds. Since these spaces are smaller than the space of Riemannian metrics of the same total volume, one expects for the classical curvature functionals weaker but still interesting critical point conditions. Other functionals that depend on the symplectic and contact structures are also cons
17#
發(fā)表于 2025-3-24 13:24:01 | 只看該作者
Additional Topics in Complex Geometry,95]. In Section 13.2 we discuss the geometry of the projectivized holomorphic tangent and cotangent bundles. The study of the projectivized holomorphic tangent bundle naturally raises the question of a complex geodesic flow, which we discuss in Section 13.3. In Section 13.4 we return to the projecti
18#
發(fā)表于 2025-3-24 17:23:26 | 只看該作者
Springer Science+Business Media LLC 2010
19#
發(fā)表于 2025-3-24 21:24:55 | 只看該作者
Riemannian Geometry of Contact and Symplectic Manifolds978-0-8176-4959-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
20#
發(fā)表于 2025-3-25 02:51:06 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/r/image/830318.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 08:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修文县| 离岛区| 兰坪| 宁德市| 金塔县| 苏州市| 即墨市| 沾化县| 新巴尔虎左旗| 广南县| 庆阳市| 湖南省| 海门市| 同江市| 阿荣旗| 延庆县| 隆回县| 威海市| 本溪| 怀远县| 遵化市| 吉木萨尔县| 通江县| 濉溪县| 汉中市| 万全县| 加查县| 吴江市| 桂平市| 射阳县| 四川省| 苏尼特右旗| 澜沧| 丹东市| 云安县| 威信县| 双江| 石狮市| 保山市| 彰化市| 安义县|