找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reduced Order Methods for Modeling and Computational Reduction; Alfio Quarteroni,Gianluigi Rozza Book 2014 Springer International Publishi

[復制鏈接]
樓主: Filament
31#
發(fā)表于 2025-3-27 00:01:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:20:25 | 只看該作者
Model Order Reduction in Fluid Dynamics: Challenges and Perspectives,eral reasons. First of all, they exhibit strong nonlinearities — which are mainly related either to nonlinear convection terms and/or some geometric variability — that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, es
33#
發(fā)表于 2025-3-27 07:35:45 | 只看該作者
Reduced Order Models at Work in Aeronautics and Medicine,or a model described by partial differential equations. The empirical approximation space is usually spanned by a small number of global modes. In case of time-periodic or mainly diffusive phenomena it is shown that this approach can lead to accurate fast simulations of complex problems. In other ca
34#
發(fā)表于 2025-3-27 12:07:09 | 只看該作者
Book 2014ned by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics..Several topics are covered, including: design, optimization, and control theory in real-time with applic
35#
發(fā)表于 2025-3-27 15:56:16 | 只看該作者
36#
發(fā)表于 2025-3-27 21:34:19 | 只看該作者
On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method,op this approach to solve both linear and nonlinear problems and highlight the minimal changes required to utilize this algorithm to accelerate existing implementations. We illustrate the advantages through algorithmic design, through analysis of stability, convergence, and computational complexity, and through several numerical examples.
37#
發(fā)表于 2025-3-27 22:20:28 | 只看該作者
38#
發(fā)表于 2025-3-28 02:28:01 | 只看該作者
39#
發(fā)表于 2025-3-28 08:51:10 | 只看該作者
Greedy Sampling Using Nonlinear Optimization,snapshot and to update the reduced basis. We show the well-posedness of this nonlinear optimization problem and derive first- and second-order optimality conditions. Numerical comparisons with the standard Greedy-training method are shown.
40#
發(fā)表于 2025-3-28 12:49:32 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 23:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
道孚县| 临汾市| 陆良县| 特克斯县| 康定县| 九龙县| 子洲县| 扬州市| 石河子市| 抚顺市| 鄂托克旗| 扬中市| 井陉县| 秦皇岛市| 安塞县| 红河县| 平顺县| 东明县| 康马县| 阿克| 咸阳市| 当涂县| 固原市| 临朐县| 临高县| 泾川县| 永川市| 孟州市| 梁山县| 施甸县| 枝江市| 灵宝市| 兴安盟| 屏东市| 家居| 民县| 河东区| 晋宁县| 利津县| 衡阳市| 阳谷县|