找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Example-Based Machine Translation; Michael Carl,Andy Way Book 2003 Kluwer Academic Publishers 2003 EBMT.algorithms.case

[復(fù)制鏈接]
樓主: Adentitious
31#
發(fā)表于 2025-3-26 23:44:38 | 只看該作者
EBMT in a Controlled Environmentnced TM system, a . (PL), which takes advantage of the huge, underused resources available in existing translation aids. We claim that PL and EBMT systems can provide valuable translation solutions for restricted domains, especially where controlled language restrictions are imposed. When integrated
32#
發(fā)表于 2025-3-27 03:37:39 | 只看該作者
Formalizing Translation Memory the MSSM algorithm based on dynamic programming techniques are all introduced in order to formalize Translation Memories (TM). We show how this approach leads to a real gain in recall and precision, and allows the extension of TM towards rudimentary, yet useful Example-Based Machine Translation (EB
33#
發(fā)表于 2025-3-27 08:32:43 | 只看該作者
An Example-Based Machine Translation System Using DP-Matching Between Word Sequencesng out DP-matching of the input sentence and source sentences in an example database while measuring the semantic distances of the words. Second, the approach adjusts the gap between the input and the most similar example by using a bilingual dictionary. We demonstrate its high coverage and accuracy
34#
發(fā)表于 2025-3-27 10:29:51 | 只看該作者
35#
發(fā)表于 2025-3-27 16:20:39 | 只看該作者
EBMT of POS-Tagged Sentences by Recursive Division Via Inductive Learning The sentence is divided according to the structure of similar examples extracted during the matching process. The approach is especially intended for languages where resources and tools are pretty much unavailable. POS taggers are the only tools utilized, and the bilingual corpus the only resource
36#
發(fā)表于 2025-3-27 18:12:11 | 只看該作者
Learning Translation Templates from Bilingual Translation Examplespondences are learned using analogical reasoning between two translation examples. Given two translation examples, any similarities in the source language sentences must correspond to the similar parts of the target language sentences, while any differences in the source strings must correspond to t
37#
發(fā)表于 2025-3-27 23:24:11 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:39 | 只看該作者
39#
發(fā)表于 2025-3-28 09:29:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:41:00 | 只看該作者
Extracting Translation Knowledge from Parallel Corporacally probable dependency relations to acquire word and phrasal correspondences. We obtained 90% precision using an English-Japanese parallel corpus of 9268 sentences in the business domain. The result showed that statistically probable dependency relations are effective in translation knowledge acq
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杂多县| 梁河县| 湘潭市| 寻乌县| 溆浦县| 乐山市| 丹江口市| 防城港市| 嘉义市| 修水县| 龙山县| 潜山县| 浦北县| 永昌县| 板桥市| 遵义县| 温州市| 通化县| 博湖县| 奉新县| 福清市| 南昌市| 公安县| 马公市| 红安县| 福海县| 江永县| 微山县| 屏山县| 灯塔市| 徐州市| 十堰市| 金坛市| 桑植县| 高要市| 麻城市| 繁峙县| 盈江县| 枝江市| 任丘市| 琼海市|