找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantifier Elimination and Cylindrical Algebraic Decomposition; Bob F. Caviness,Jeremy R. Johnson Conference proceedings 1998 Springer-Ver

[復(fù)制鏈接]
樓主: 可怖
31#
發(fā)表于 2025-3-27 00:45:03 | 只看該作者
32#
發(fā)表于 2025-3-27 03:21:11 | 只看該作者
Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition,30). As noted by Tarski, any quantifier elimination method for this theory also provides a decision method, which enables one to decide whether any sentence of the theory is true or false. Since many important and difficult mathematical problems can be expressed in this theory, any computationally f
33#
發(fā)表于 2025-3-27 05:39:56 | 只看該作者
Super-Exponential Complexity of Presburger Arithmetic, theories of logic: the first-order theory of the real numbers under addition, and Presburger arithmetic — the first-order theory of addition on the natural numbers. There is a fixed constant . > 0 such that for every (nondeterministic) decision procedure for determining the truth of sentences of re
34#
發(fā)表于 2025-3-27 11:55:11 | 只看該作者
35#
發(fā)表于 2025-3-27 16:36:09 | 只看該作者
An Improvement of the Projection Operator in Cylindrical Algebraic Decomposition,s, provided that the required amount of computation can be sufficiently reduced. An important component of the CAD method is the projection operation. Given a set . of .-variate polynomials, the projection operation produces a certain set . of (. ? l)-variate polynomials such that a CAD of .-dimensi
36#
發(fā)表于 2025-3-27 19:23:31 | 只看該作者
Partial Cylindrical Algebraic Decomposition for Quantifier Elimination,s by means of quantifier elimination, provided that the required amount of computation can be sufficiently reduced. Arnon (1981) introduced the important method of clustering for reducing the required computation and McCallum (1984) introduced an improved projection operation which is also very effe
37#
發(fā)表于 2025-3-28 00:20:09 | 只看該作者
38#
發(fā)表于 2025-3-28 03:00:55 | 只看該作者
39#
發(fā)表于 2025-3-28 08:49:10 | 只看該作者
40#
發(fā)表于 2025-3-28 13:59:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜山县| 盐边县| 高州市| 天台县| 宿松县| 吴旗县| 元谋县| 洛隆县| 前郭尔| 温州市| 旅游| 安化县| 芦溪县| 金沙县| 昌邑市| 乌鲁木齐县| 大同县| 古蔺县| 汝州市| 新安县| 当阳市| 垦利县| 保德县| 津南区| 桓仁| 江达县| 丹东市| 淮北市| 徐水县| 霍城县| 白沙| 涟源市| 舒兰市| 原平市| 克东县| 会东县| 永宁县| 南昌县| 建昌县| 沁阳市| 营山县|