找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantifier Elimination and Cylindrical Algebraic Decomposition; Bob F. Caviness,Jeremy R. Johnson Conference proceedings 1998 Springer-Ver

[復(fù)制鏈接]
樓主: 可怖
21#
發(fā)表于 2025-3-25 04:00:46 | 只看該作者
22#
發(fā)表于 2025-3-25 08:41:22 | 只看該作者
23#
發(fā)表于 2025-3-25 12:40:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:24 | 只看該作者
Conference proceedings 1998losed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades.This volume is a state-of-the-art collection of important papers on CAD
25#
發(fā)表于 2025-3-25 23:30:54 | 只看該作者
0943-853X ebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer a
26#
發(fā)表于 2025-3-26 00:28:50 | 只看該作者
Super-Exponential Complexity of Presburger Arithmetic,al addition and for all sufficiently large ., there is a sentence of length . for which the decision procedure runs for more than 2. steps. In the case of Presburger arithmetic, the corresponding bound is .. These bounds apply also to the minimal lengths of proofs for any complete axiomatization in which the axioms are easily recognized.
27#
發(fā)表于 2025-3-26 07:20:23 | 只看該作者
28#
發(fā)表于 2025-3-26 12:02:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:01 | 只看該作者
30#
發(fā)表于 2025-3-26 17:05:18 | 只看該作者
,Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress,d by the author in 1973 at Carnegie Mellon University (Collins 1973b). In the twenty years since then several very important improvements have been made to the method which, together with a very large increase in available computational power, have made it possible to solve in seconds or minutes som
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宁县| 莆田市| 巴林右旗| 航空| 连山| 新乡市| 莲花县| 道真| 牙克石市| 宁国市| 灌云县| 施甸县| 松桃| 邹平县| 沽源县| 楚雄市| 武穴市| 太谷县| 忻城县| 杭锦旗| 德令哈市| 凤山县| 舒城县| 子长县| 铜山县| 靖边县| 绥化市| 东兰县| 玉树县| 吴江市| 安远县| 阆中市| 犍为县| 镇雄县| 中西区| 松阳县| 广元市| 西乡县| 军事| 临泉县| 贞丰县|