找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Information Systems; 10th International C Andrés Montoyo,Rafael Muńoz,Elisabeth Métais Conference proceedin

[復(fù)制鏈接]
樓主: Adentitious
51#
發(fā)表于 2025-3-30 09:28:52 | 只看該作者
Francis C. Y. Chik,Robert W. P. Luk,Korris F. L. Chungs.Presents acomprehensive and unique set of full-scale testsThis book presents the mainoutcomes of the first European research project on the seismic behavior ofadjustable steel storage pallet racking systems. In particular, it describes acomprehensive and unique set of full-scale tests designed to
52#
發(fā)表于 2025-3-30 13:57:45 | 只看該作者
53#
發(fā)表于 2025-3-30 16:37:07 | 只看該作者
On the Transformation of Sentences with Genitive Relations to SQL Queriesule based on a Hungarian question processor. One of the most crucial part of the system was the transformation of genitive relations to adequate SQL queries, since e.g.?questions begin with “Who” and “What” mostly contain such a relation. The genitive relation is one of the most complex semantic str
54#
發(fā)表于 2025-3-30 21:31:08 | 只看該作者
55#
發(fā)表于 2025-3-31 01:59:22 | 只看該作者
Application of Text Categorization to Astronomy Fieldn the astronomy field, astronomers often assign different names to table columns at their will even if they are about the same attributes of sky objects. As a result, it produces a big problem for data analysis over different tables. To solve this problem, the standard vocabulary called “unified con
56#
發(fā)表于 2025-3-31 06:06:18 | 只看該作者
57#
發(fā)表于 2025-3-31 11:17:23 | 只看該作者
58#
發(fā)表于 2025-3-31 17:07:26 | 只看該作者
Automatic Extraction of Semantic Relationships for WordNet by Means of Pattern Learning from Wikipedlopedia. Next, these patterns can be applied to extend existing ontologies or semantic networks with new relations. The experiments have been performed with the Simple English Wikipedia and WordNet 1.7. A new algorithm has been devised for automatically generalising the lexical patterns found in the
59#
發(fā)表于 2025-3-31 18:38:39 | 只看該作者
Combining Data-Driven Systems for Improving Named Entity Recognition An important preprocessing tool of these tasks consists of name entities recognition, which corresponds to a Name Entity Recognition (NER) task. In this paper we propose a completely automatic NER which involves identification of proper names in texts, and classification into a set of predefined ca
60#
發(fā)表于 2025-3-31 23:58:30 | 只看該作者
Natural Language Processing: Mature Enough for Requirements Documents Analysis?complete. Misunderstandings and errors of the requirements engineering phase propagate to later development phases and can potentially lead to a project failure..A promising way to overcome misunderstandings is to extract and validate terms used in requirements documents and relations between these
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁门县| 洛阳市| 佳木斯市| 三都| 青川县| 海盐县| 永丰县| 丽江市| 河池市| 凌海市| 青州市| 榆树市| 瑞安市| 买车| 常宁市| 葫芦岛市| 建平县| 托里县| 西宁市| 珠海市| 休宁县| 香港| 富宁县| 咸宁市| 静安区| 伽师县| 定西市| 大余县| 德昌县| 英吉沙县| 长阳| 桦川县| 贞丰县| 保德县| 临沧市| 乌鲁木齐县| 甘洛县| 左权县| 黄冈市| 惠来县| 长治市|