找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Software - ICMS 2010; Third International Komei Fukuda,Joris van der Hoeven,Nobuki Takayama Conference proceedings 2010 Sprin

[復制鏈接]
樓主: Spring
31#
發(fā)表于 2025-3-26 22:24:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:30:02 | 只看該作者
The Dynamic Dictionary of Mathematical Functions (DDMF)athematical formulas on elementary and special functions. The formulas are automatically generated by computer algebra routines. The user can ask for more terms of the expansions, more digits of the numerical values, or proofs of some of the formulas.
33#
發(fā)表于 2025-3-27 07:18:53 | 只看該作者
Computing Polycyclic Quotients of Finitely (L-)Presented Groups via Groebner Basesycyclic quotients of groups defined by a so-called finite .-presentation. This type of presentation incorporates all finite presentations as well as certain infinite presentations. The algorithm allows a variety of polycyclic quotients ranging from maximal nilpotent quotients of a given class to the
34#
發(fā)表于 2025-3-27 11:04:34 | 只看該作者
35#
發(fā)表于 2025-3-27 16:13:59 | 只看該作者
Towards High-Performance Computational Algebra with GAPwhile preserving as much of the existing codebase (about one million lines of code) with as few changes as possible without requiring users (a large percentage of which are domain experts in their fields without necessarily having a background in parallel programming) to have to learn complicated pa
36#
發(fā)表于 2025-3-27 21:30:47 | 只看該作者
37#
發(fā)表于 2025-3-27 22:07:49 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:39 | 只看該作者
39#
發(fā)表于 2025-3-28 07:09:02 | 只看該作者
Controlled Perturbation for Certified Geometric Computing with Fixed-Precision Arithmeticumptions of most theoretical geometric algorithms concerning the handling of robustness issues, namely issues related to arithmetic precision and degenerate input. Controlled perturbation, an approach to robust implementation of geometric algorithms we introduced in the late 1990’s, aims at removing
40#
發(fā)表于 2025-3-28 13:00:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-20 23:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丰宁| 赤壁市| 龙江县| 衡水市| 平果县| 新龙县| 桓台县| 呈贡县| 香港 | 抚远县| 博客| 揭西县| 青州市| 屯留县| 大港区| 宁晋县| 余庆县| 东明县| 绥阳县| 浮梁县| 伊金霍洛旗| 鄂托克前旗| 华阴市| 双峰县| 沁源县| 舞钢市| 右玉县| 铅山县| 民乐县| 泰安市| 屏东县| 获嘉县| 迁安市| 广元市| 梧州市| 天津市| 古田县| 彭州市| 东丽区| 武川县| 南安市|