找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowing without Thinking; Mind, Action, Cognit Zdravko Radman (Professor of Philosophy) Book 2012 Palgrave Macmillan, a division of Macmill

[復(fù)制鏈接]
樓主: morphology
41#
發(fā)表于 2025-3-28 17:12:34 | 只看該作者
er [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
42#
發(fā)表于 2025-3-28 20:14:11 | 只看該作者
Massimiliano Cappuccio,Michael Wheelerer [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
43#
發(fā)表于 2025-3-29 00:36:04 | 只看該作者
Daniel D. Huttoer [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
44#
發(fā)表于 2025-3-29 05:16:13 | 只看該作者
Michael Schmitzer [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
45#
發(fā)表于 2025-3-29 08:38:01 | 只看該作者
46#
發(fā)表于 2025-3-29 12:56:06 | 只看該作者
Joseph Margoliser [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
47#
發(fā)表于 2025-3-29 18:47:10 | 只看該作者
48#
發(fā)表于 2025-3-29 23:30:53 | 只看該作者
Susan A. J. Stuarts that go beyond the Brunn–Minkowski theory. One of the major current research directions addressedis the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Scienc
49#
發(fā)表于 2025-3-30 02:06:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:49:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常熟市| 沛县| 南宁市| 南漳县| 开化县| 特克斯县| 霍城县| 施秉县| 康平县| 平湖市| 上虞市| 博爱县| 菏泽市| 丰宁| 禹州市| 德化县| 云林县| 隆昌县| 黄骅市| 邹城市| 台北县| 麻城市| 台南县| 金秀| 广丰县| 台湾省| 融水| 鄂托克前旗| 横峰县| 栖霞市| 宁晋县| 兴安县| 翁牛特旗| 凌海市| 荔波县| 嫩江县| 潞西市| 万宁市| 富源县| 昌图县| 清涧县|