找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowing without Thinking; Mind, Action, Cognit Zdravko Radman (Professor of Philosophy) Book 2012 Palgrave Macmillan, a division of Macmill

[復(fù)制鏈接]
查看: 10290|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:37:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Knowing without Thinking
副標(biāo)題Mind, Action, Cognit
編輯Zdravko Radman (Professor of Philosophy)
視頻videohttp://file.papertrans.cn/544/543819/543819.mp4
叢書名稱New Directions in Philosophy and Cognitive Science
圖書封面Titlebook: Knowing without Thinking; Mind, Action, Cognit Zdravko Radman (Professor of Philosophy) Book 2012 Palgrave Macmillan, a division of Macmill
描述A volume devoted explicitly to the subtle and multidimensional phenomenon of background knowing that has to be recognized as an important element of the triad mind-body-world. The essays are inspired by seminal works on the topic by Searle and Dreyfus, but also make significant contribution in bringing the discussion beyond the classical confines.
出版日期Book 2012
關(guān)鍵詞body; Chinese; cognition; concept; corpus; dynamics; essay; experience; intention; John Rogers Searle; knowled
版次1
doihttps://doi.org/10.1057/9780230368064
isbn_softcover978-1-349-33025-6
isbn_ebook978-0-230-36806-4Series ISSN 2946-2959 Series E-ISSN 2946-2967
issn_series 2946-2959
copyrightPalgrave Macmillan, a division of Macmillan Publishers Limited 2012
The information of publication is updating

書目名稱Knowing without Thinking影響因子(影響力)




書目名稱Knowing without Thinking影響因子(影響力)學(xué)科排名




書目名稱Knowing without Thinking網(wǎng)絡(luò)公開度




書目名稱Knowing without Thinking網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowing without Thinking被引頻次




書目名稱Knowing without Thinking被引頻次學(xué)科排名




書目名稱Knowing without Thinking年度引用




書目名稱Knowing without Thinking年度引用學(xué)科排名




書目名稱Knowing without Thinking讀者反饋




書目名稱Knowing without Thinking讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:05:40 | 只看該作者
Hubert L. Dreyfus.. We are interested here in small . and show that for all .∈..?[?2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..?[?2,2] satisfying (2), provided we assume in (3) that .. See P
板凳
發(fā)表于 2025-3-22 04:06:20 | 只看該作者
地板
發(fā)表于 2025-3-22 06:56:20 | 只看該作者
Massimiliano Cappuccio,Michael Wheeler.. We are interested here in small . and show that for all .∈..?[?2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..?[?2,2] satisfying (2), provided we assume in (3) that .. See P
5#
發(fā)表于 2025-3-22 08:50:17 | 只看該作者
Daniel D. Hutto.. We are interested here in small . and show that for all .∈..?[?2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..?[?2,2] satisfying (2), provided we assume in (3) that .. See P
6#
發(fā)表于 2025-3-22 16:41:19 | 只看該作者
Michael Schmitz.. We are interested here in small . and show that for all .∈..?[?2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..?[?2,2] satisfying (2), provided we assume in (3) that .. See P
7#
發(fā)表于 2025-3-22 18:34:36 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:02 | 只看該作者
9#
發(fā)表于 2025-3-23 05:08:04 | 只看該作者
Daniel A. Schmickingom geometric graph in which vertices correspond to points generated randomly and independently from a non-isotropic .-dimensional Gaussian distribution, and two vertices are connected if the distance between them is smaller than some pre-specified threshold. We derive new notions of dimensionality w
10#
發(fā)表于 2025-3-23 07:40:49 | 只看該作者
tric analysis.Written from an interdisciplinary perspective,Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德保县| 疏勒县| 泾阳县| 济阳县| 孟村| 兴化市| 奈曼旗| 漳州市| 胶州市| 邵武市| 北票市| 陇南市| 如皋市| 大安市| 乾安县| 许昌县| 大兴区| 白朗县| 枣阳市| 江城| 福贡县| 新密市| 景谷| 香格里拉县| 松桃| 黔南| 霍山县| 河津市| 成都市| 金平| 宁晋县| 金昌市| 竹北市| 西峡县| 荥经县| 兴文县| 徐闻县| 射阳县| 商洛市| 太保市| 乐陵市|