找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowing without Thinking; Mind, Action, Cognit Zdravko Radman (Professor of Philosophy) Book 2012 Palgrave Macmillan, a division of Macmill

[復制鏈接]
樓主: morphology
41#
發(fā)表于 2025-3-28 17:12:34 | 只看該作者
er [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
42#
發(fā)表于 2025-3-28 20:14:11 | 只看該作者
Massimiliano Cappuccio,Michael Wheelerer [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
43#
發(fā)表于 2025-3-29 00:36:04 | 只看該作者
Daniel D. Huttoer [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
44#
發(fā)表于 2025-3-29 05:16:13 | 只看該作者
Michael Schmitzer [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
45#
發(fā)表于 2025-3-29 08:38:01 | 只看該作者
46#
發(fā)表于 2025-3-29 12:56:06 | 只看該作者
Joseph Margoliser [L-S] that .=λcos(.)+. on ? has no absolutely continuous spectrum for . > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-
47#
發(fā)表于 2025-3-29 18:47:10 | 只看該作者
48#
發(fā)表于 2025-3-29 23:30:53 | 只看該作者
Susan A. J. Stuarts that go beyond the Brunn–Minkowski theory. One of the major current research directions addressedis the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Scienc
49#
發(fā)表于 2025-3-30 02:06:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:49:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
班玛县| 弥渡县| 阿拉尔市| 广安市| 淅川县| 县级市| 孝义市| 吉首市| 双城市| 英超| 莲花县| 贵港市| 鞍山市| 会理县| 灵丘县| 内乡县| 厦门市| 千阳县| 新昌县| 塘沽区| 恩平市| 墨脱县| 尖扎县| 荣成市| 封开县| 福泉市| 青海省| 建昌县| 鲁山县| 许昌市| 泉州市| 丰城市| 五台县| 治县。| 西林县| 肇庆市| 黄山市| 赤壁市| 邻水| 龙南县| 深州市|