找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Smooth Manifolds; John M. Lee Textbook 2012Latest edition Springer Science+Business Media New York 2012 Frobenius theorem.

[復(fù)制鏈接]
樓主: 游牧
21#
發(fā)表于 2025-3-25 05:44:53 | 只看該作者
Vector Bundles,n go on to discuss local and global sections of vector bundles (which correspond to vector fields in the case of the tangent bundle). At the end of the chapter, we discuss the natural maps between bundles, called ., and subsets of vector bundles that are themselves vector bundles, called ..
22#
發(fā)表于 2025-3-25 09:14:34 | 只看該作者
Riemannian Metrics,fter defining Riemannian metrics and the main constructions associated with them, we show how submanifolds of Riemannian manifolds inherit induced Riemannian metrics. Then we show how a Riemannian metric leads to a distance function, which allows us to consider connected Riemannian manifolds as metric spaces.
23#
發(fā)表于 2025-3-25 12:40:41 | 只看該作者
24#
發(fā)表于 2025-3-25 17:58:08 | 只看該作者
Vector Fields,t under left multiplication is closed under Lie brackets, and thus forms an algebraic object naturally associated with the group, called the .. We show how Lie group homomorphisms induce homomorphisms of their Lie algebras, from which it follows that isomorphic Lie groups have isomorphic Lie algebras.
25#
發(fā)表于 2025-3-25 22:25:26 | 只看該作者
The de Rham Theorem,hey can be computed by restricting attention only to smooth simplices. In the final section of the chapter, we prove the de Rham theorem by showing that integration of differential forms over smooth simplices induces isomorphisms between the de Rham groups and the singular cohomology groups.
26#
發(fā)表于 2025-3-26 00:25:08 | 只看該作者
0072-5285 s, the rank theorem and the fundamental theorem on flows, mu.This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures
27#
發(fā)表于 2025-3-26 04:35:54 | 只看該作者
28#
發(fā)表于 2025-3-26 10:03:20 | 只看該作者
John M. Leeplines, the proposed encyclopedia will have a wide audience including graduate students, researchers and different levels of scientists in biomedicine, cellular and molecular biology, bioengineering, physiological and biochemistry, and pharmacology across both academia and industry.
29#
發(fā)表于 2025-3-26 16:16:55 | 只看該作者
30#
發(fā)表于 2025-3-26 20:21:54 | 只看該作者
John M. Leeplines, the proposed encyclopedia will have a wide audience including graduate students, researchers and different levels of scientists in biomedicine, cellular and molecular biology, bioengineering, physiological and biochemistry, and pharmacology across both academia and industry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西平县| 故城县| 卓资县| 原平市| 杂多县| 苏尼特右旗| 莒南县| 昌都县| 清流县| 章丘市| 石林| 安吉县| 灵台县| 丹江口市| 潮安县| 清徐县| 望城县| 孝义市| 汝阳县| 抚松县| 自治县| 建阳市| 镇康县| 青岛市| 桂林市| 克拉玛依市| 普洱| 古交市| 龙南县| 资阳市| 大同市| 长春市| 德令哈市| 商水县| 凭祥市| 南华县| 汉沽区| 梨树县| 紫云| 西畴县| 康定县|