找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Smooth Manifolds; John M. Lee Textbook 2012Latest edition Springer Science+Business Media New York 2012 Frobenius theorem.

[復(fù)制鏈接]
樓主: 游牧
11#
發(fā)表于 2025-3-23 12:23:50 | 只看該作者
12#
發(fā)表于 2025-3-23 14:36:29 | 只看該作者
13#
發(fā)表于 2025-3-23 21:43:45 | 只看該作者
Differential Forms,as the gradient, divergence, and curl operators of multivariable calculus. At the end of the chapter, we will see how the exterior derivative can be used to simplify the computation of Lie derivatives of differential forms.
14#
發(fā)表于 2025-3-23 23:55:20 | 只看該作者
Textbook 2012Latest editionneed in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras,
15#
發(fā)表于 2025-3-24 05:33:45 | 只看該作者
Integral Curves and Flows,s. We then introduce the ., which is a coordinate-independent way of computing the rate of change of one vector field along the flow of another. In the last section, we apply flows to the study of first-order partial differential equations.
16#
發(fā)表于 2025-3-24 06:31:25 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:19 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:39 | 只看該作者
De Rham Cohomology,n terms of those of its open subsets. Using it, we compute the de Rham groups of spheres and the top-degree groups of compact manifolds, and give a brief introduction to degree theory for maps between compact manifolds of the same dimension.
19#
發(fā)表于 2025-3-24 20:52:10 | 只看該作者
Distributions and Foliations, chapter, the ., tells us that involutivity is also sufficient for the existence of an integral manifold through each point. At the end of the chapter, we give applications of the theory to Lie groups and to partial differential equations.
20#
發(fā)表于 2025-3-25 00:31:37 | 只看該作者
Submanifolds,folds, called ., which have the subspace topology inherited from their containing manifolds. Next, we introduce a more general kind of submanifolds, called ., which turn out to be the images of injective immersions. At the end of the chapter, we show how the theory of submanifolds can be generalized to the case of submanifolds with boundary.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大洼县| 来宾市| 赤壁市| 樟树市| 岑溪市| 蓬溪县| 清苑县| 化隆| 闽侯县| 星座| 阜康市| 卢氏县| 翁牛特旗| 渝北区| 和林格尔县| 军事| 天镇县| 青岛市| 密山市| 平安县| 钟祥市| 甘孜县| 灵武市| 平武县| 兴海县| 古丈县| 佛坪县| 清河县| 白山市| 墨江| 璧山县| 阳西县| 电白县| 海丰县| 黄平县| 若尔盖县| 驻马店市| 拉萨市| 盐亭县| 漠河县| 淮滨县|