找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Callow
11#
發(fā)表于 2025-3-23 11:45:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:39 | 只看該作者
https://doi.org/10.1007/978-3-662-53375-8In this chapter we investigate what it means for a graph to have relatively few edges. This leads to the notions of weakly sparse, approximately sparse and sparse graphs, as well as graphs which satisfy a strong isoperimetric inequality.
13#
發(fā)表于 2025-3-23 20:43:42 | 只看該作者
Hilde Weiss,Gülay Ate?,Philipp SchnellIn this chapter we introduce the notion of an intrinsic metric. Section 11.1 is devoted to definitions and motivations. An important class of examples are so-called path metrics, which we discuss in Section 11.2. In this section we prove a Hopf–Rinow theorem, which characterizes metric completeness.
14#
發(fā)表于 2025-3-24 00:42:20 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:35 | 只看該作者
https://doi.org/10.1057/9780230119048In this chapter we present a volume growth criterion for stochastic completeness. More specifically, we show that the measure of finite balls defined with respect to an intrinsic metric must growsuperexponentially in order for a graph to be stochastically incomplete.
17#
發(fā)表于 2025-3-24 12:17:28 | 只看該作者
Finite GraphsThe concept of a graph is one of the most fundamental mathematical concepts ever conceived. Graphs inherently appear in many branches of mathematics and natural sciences.
18#
發(fā)表于 2025-3-24 17:04:17 | 只看該作者
Infinite Graphs – Key ConceptsIn this chapter we discuss key concepts in the spectral geometry of infinite graphs. We first introduce in Section 1.1 the setting and the main objects of study found throughout the remainder of the book.
19#
發(fā)表于 2025-3-24 19:35:34 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湛江市| 手游| 深水埗区| 舞阳县| 阜新| 格尔木市| 凉城县| 元氏县| 连南| 柳河县| 耿马| 九龙坡区| 永年县| 密云县| 岐山县| 天水市| 安福县| 厦门市| 新和县| 自治县| 兴国县| 裕民县| 巴林右旗| 将乐县| 尖扎县| 瑞金市| 仙桃市| 潢川县| 和硕县| 泾川县| 满城县| 文安县| 大新县| 青阳县| 自贡市| 磴口县| 天津市| 海盐县| 合山市| 固原市| 尉犁县|