找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 8940|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:50:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Graphs and Discrete Dirichlet Spaces
編輯Matthias Keller,Daniel Lenz,Rados?aw K. Wojciechow
視頻videohttp://file.papertrans.cn/389/388161/388161.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: ;
出版日期Book 2021
版次1
doihttps://doi.org/10.1007/978-3-030-81459-5
isbn_ebook978-3-030-81459-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
The information of publication is updating

書目名稱Graphs and Discrete Dirichlet Spaces影響因子(影響力)




書目名稱Graphs and Discrete Dirichlet Spaces影響因子(影響力)學(xué)科排名




書目名稱Graphs and Discrete Dirichlet Spaces網(wǎng)絡(luò)公開度




書目名稱Graphs and Discrete Dirichlet Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Graphs and Discrete Dirichlet Spaces被引頻次




書目名稱Graphs and Discrete Dirichlet Spaces被引頻次學(xué)科排名




書目名稱Graphs and Discrete Dirichlet Spaces年度引用




書目名稱Graphs and Discrete Dirichlet Spaces年度引用學(xué)科排名




書目名稱Graphs and Discrete Dirichlet Spaces讀者反饋




書目名稱Graphs and Discrete Dirichlet Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:33:54 | 只看該作者
https://doi.org/10.1007/978-3-319-97328-9The concept of a graph is one of the most fundamental mathematical concepts ever conceived. Graphs inherently appear in many branches of mathematics and natural sciences.
板凳
發(fā)表于 2025-3-22 01:05:13 | 只看該作者
https://doi.org/10.1057/9781137282057In this chapter we discuss key concepts in the spectral geometry of infinite graphs. We first introduce in Section 1.1 the setting and the main objects of study found throughout the remainder of the book.
地板
發(fā)表于 2025-3-22 04:57:35 | 只看該作者
In this chapter we extend the theory of the key concepts introduced in the previous chapter. In particular, we collect various tools that are needed at later parts of the book and provide further conceptual insights.
5#
發(fā)表于 2025-3-22 10:12:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:36 | 只看該作者
Muslim Women and Shari‘a(chǎn)h CouncilsIn Section 4.4 we study the bottom of the essential spectrum of ?. The essential spectrum is the complement in the spectrum of the isolated eigenvalues of finite multiplicity.
7#
發(fā)表于 2025-3-22 19:35:16 | 只看該作者
https://doi.org/10.1007/978-3-031-16231-2Any semigroup coming from an operator associated to a Dirichlet form is positivity preserving. In this section, we will show that if the operator comes from a Dirichlet form which is associated to a connected graph, then the semigroup is positivity improving.
8#
發(fā)表于 2025-3-23 01:14:04 | 只看該作者
https://doi.org/10.1007/978-3-319-63221-6The topic presented in this chapter is recurrence. This concept can be studied via probability, potential theory and operator theory and has interpretations in each context.
9#
發(fā)表于 2025-3-23 02:34:35 | 只看該作者
10#
發(fā)表于 2025-3-23 08:43:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绵竹市| 铜陵市| 永丰县| 苍梧县| 蚌埠市| 赤峰市| 内黄县| 历史| 连平县| 济南市| 张家川| 双城市| 乌鲁木齐县| 昆明市| 临澧县| 乐亭县| 平南县| 收藏| 洛阳市| 海原县| 启东市| 余庆县| 甘谷县| 盘山县| 陆川县| 洪雅县| 宁波市| 南丹县| 凤城市| 罗山县| 拉萨市| 邢台市| 建湖县| 鄢陵县| 梓潼县| 仁化县| 呈贡县| 嘉禾县| 盐边县| 师宗县| 宜良县|