找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 粘上
31#
發(fā)表于 2025-3-27 00:08:37 | 只看該作者
32#
發(fā)表于 2025-3-27 03:18:24 | 只看該作者
https://doi.org/10.1007/978-3-030-57219-8hm tests the subgraph of the given graph G for planarity and if the subgraph fails the test, it deletes a minimum number of edges necessary for planarization. The subgraph has one vertex at the beginning, and the number of its vertices is increased one by one until all the vertices of G are included
33#
發(fā)表于 2025-3-27 07:15:40 | 只看該作者
34#
發(fā)表于 2025-3-27 11:44:06 | 只看該作者
https://doi.org/10.1007/978-94-011-2759-2s of central trees have been clarified. In this paper, in connection with the critical sets of the edge set of a graph, some new theorems on central trees of the graph are presented. Also, a few examples are included to illustrate the applications of these theorems.
35#
發(fā)表于 2025-3-27 16:20:03 | 只看該作者
36#
發(fā)表于 2025-3-27 20:12:29 | 只看該作者
37#
發(fā)表于 2025-3-28 01:57:03 | 只看該作者
38#
發(fā)表于 2025-3-28 04:18:03 | 只看該作者
A status on the linear arboricity,riant first arose in a study [10] of information retrieval in file systems. A quite similar covering invariant which is well known to the linear arboricity is the . of a graph, which is defined as the minimum number of forests whose union is G. Nash-Williams [11] determined the arboricity of any gra
39#
發(fā)表于 2025-3-28 06:18:48 | 只看該作者
On centrality functions of a graph,he vertices classified according to the distance from a given vertex. Some fundamental properties of the centrality functions and the set of central vertices are summarized. Inserting an edge between a center and a vertex, the stability of the set of central vertices are investigated..For a weakly c
40#
發(fā)表于 2025-3-28 13:12:45 | 只看該作者
Canonical decompositions of symmetric submodular systems,. We examine the structures of symmetric submodular systems and provide a decomposition theory of symmetric submodular systems. The theory is a generalization of the decomposition theory of 2-connected graphs developed by W. T. Tutte.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
登封市| 乌拉特后旗| 桐乡市| 新兴县| 临城县| 靖州| 双峰县| 桦南县| 郎溪县| 长治县| 台南县| 儋州市| 通榆县| 邛崃市| 临沂市| 新巴尔虎右旗| 乳山市| 锦屏县| 当阳市| 铜梁县| 自治县| 彭泽县| 华亭县| 永春县| 嵩明县| 长子县| 准格尔旗| 全南县| 普格县| 通渭县| 嫩江县| 威海市| 永顺县| 枣阳市| 新邵县| 南溪县| 南木林县| 商都县| 化州市| 云安县| 泊头市|