找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 粘上
21#
發(fā)表于 2025-3-25 06:40:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:39 | 只看該作者
Combinatorial problems on series-parallel graphs,These include (i) the decision problem, and (ii) the minimum edge (vertex) deletion problem both with respect to a property characterized by a finite number of forbidden graphs, and (iii) the generalized matching problem.
23#
發(fā)表于 2025-3-25 13:31:16 | 只看該作者
24#
發(fā)表于 2025-3-25 16:59:51 | 只看該作者
25#
發(fā)表于 2025-3-25 23:05:28 | 只看該作者
Characterization of polyhex graphs as applied to chemistry,s for characterizing the polyhex graphs are described and discussed, including the topological index, characteristic polynomial, sextet polvnomial, etc. Enumeration of the number of the maximum matching (or Kekulé patterns) is also discussed.
26#
發(fā)表于 2025-3-26 02:38:38 | 只看該作者
27#
發(fā)表于 2025-3-26 05:52:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:32 | 只看該作者
29#
發(fā)表于 2025-3-26 14:05:56 | 只看該作者
Minimally Invasive Total Joint Arthroplastyhe vertices classified according to the distance from a given vertex. Some fundamental properties of the centrality functions and the set of central vertices are summarized. Inserting an edge between a center and a vertex, the stability of the set of central vertices are investigated..For a weakly c
30#
發(fā)表于 2025-3-26 16:58:11 | 只看該作者
https://doi.org/10.1007/978-1-4939-1317-6. We examine the structures of symmetric submodular systems and provide a decomposition theory of symmetric submodular systems. The theory is a generalization of the decomposition theory of 2-connected graphs developed by W. T. Tutte.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁南县| 墨玉县| 南城县| 巴东县| 璧山县| 云浮市| 梁平县| 滦平县| 鄂州市| 乐山市| 鹤壁市| 奉化市| 林西县| 兴海县| 新兴县| 武汉市| 台安县| 望都县| 同德县| 连云港市| 九江市| 逊克县| 虹口区| 姜堰市| 微博| 叶城县| 桂林市| 安宁市| 炉霍县| 喀喇沁旗| 阿勒泰市| 昭觉县| 水城县| 扎鲁特旗| 安化县| 黔西| 钟山县| 多伦县| 康平县| 金川县| 云龙县|