找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fasten
11#
發(fā)表于 2025-3-23 12:25:01 | 只看該作者
Circuit Double Covers of Graphs,raph theorists as one of the major open problems in the field. The CDC conjecture, Tutte’s 5-flow conjecture, and the Berge-Fulkerson conjecture are three major snark family conjectures since they are all trivial for 3-edge-colorable cubic graphs and remain widely open for snarks. This chapter is a
12#
發(fā)表于 2025-3-23 14:20:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:52:15 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:12:19 | 只看該作者
16#
發(fā)表于 2025-3-24 07:00:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:01:23 | 只看該作者
https://doi.org/10.1007/978-1-349-12564-7 The most studied property is that of inducing an empty graph–a graph without any edges. Changing the property slightly creates interesting variations. In this paper I will discuss a few of my favorite coloring problems and variations. This discussion is not meant to be comprehensive. The field is s
18#
發(fā)表于 2025-3-24 15:28:25 | 只看該作者
https://doi.org/10.1007/978-1-349-13431-1g (1)?the 1963 Vizing’s Conjecture about the domination number of the Cartesian product of two graphs [47], (2) the 1966 Hedetniemi Conjecture about the chromatic number of the categorical product of two graphs [28], (3) the 1976 Tree Packing Conjecture of Gyárfás and Lehel [23], (4) the 1981 Path P
19#
發(fā)表于 2025-3-24 22:52:29 | 只看該作者
https://doi.org/10.1007/978-3-642-34249-3 A closer inspection reveals an interesting common feature. Trees and hypercubes can be constructed using a similar sort of expansion procedure. Now, we can introduce a class of graphs that forms a common generalization of trees and hypercubes: it consists of all those graphs that can be constructed
20#
發(fā)表于 2025-3-25 02:22:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
犍为县| 鲜城| 塘沽区| 濮阳县| 锡林浩特市| 荣成市| 茌平县| 常熟市| 彩票| 沂南县| 东丽区| 淮滨县| 安庆市| 新绛县| 陆良县| 菏泽市| 威远县| 莱西市| 柳林县| 改则县| 新田县| 吉木乃县| 定兴县| 札达县| 巴彦县| 黄骅市| 绍兴县| 达尔| 南丰县| 玛沁县| 太和县| 南川市| 泌阳县| 辉县市| 兴海县| 扎兰屯市| 比如县| 江华| 泰宁县| 石阡县| 西安市|