找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fasten
21#
發(fā)表于 2025-3-25 06:51:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:59:24 | 只看該作者
https://doi.org/10.1007/978-1-349-07323-8We consider some of the most important conjectures in the study of the game of Cops and Robbers and the cop number of a graph. The conjectures touch on diverse areas such as algorithmic, topological, and structural graph theory.
24#
發(fā)表于 2025-3-25 19:14:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:44 | 只看該作者
Minerals as Advanced Materials IWe present a conjecture and eight open questions in areas of coloring graphs on the plane, on nonplanar surfaces, and on multiple planes. These unsolved problems relate to classical graph coloring and to list coloring for general embedded graphs and also for planar great-circle graphs and for locally planar graphs.
26#
發(fā)表于 2025-3-26 02:18:02 | 只看該作者
Minerals as Advanced Materials IIIn this chapter, we explore the history and the status of the Zarankiewicz crossing number conjecture and the Hill crossing number conjecture, on drawing complete bipartite and complete graphs in the plane with a minimum number of edge crossings. We discuss analogous problems on other surfaces and in different models of drawing.
27#
發(fā)表于 2025-3-26 07:33:09 | 只看該作者
https://doi.org/10.1007/978-1-4684-6638-6For a graph . of order . and a parameter ?(.), if ?(.) ≤ .. for some rational number ., where 0 < . < 1, then we refer to this upper bound on ?(.) as an .-bound on ?(.). In this chapter, we present over twenty .-bound conjectures on domination type parameters.
28#
發(fā)表于 2025-3-26 09:05:59 | 只看該作者
Conjectures on Cops and Robbers,We consider some of the most important conjectures in the study of the game of Cops and Robbers and the cop number of a graph. The conjectures touch on diverse areas such as algorithmic, topological, and structural graph theory.
29#
發(fā)表于 2025-3-26 13:00:20 | 只看該作者
,Chvátal’s ,,-Tough Conjecture,In 1973, Chvátal introduced the concept of “tough graphs” and conjectured that graphs with sufficiently high toughness are hamiltonian. Here we look at some personal perspectives of this conjecture, both those of Chvátal and the author. Furthermore, we present the history of the conjecture and its current status.
30#
發(fā)表于 2025-3-26 19:18:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开远市| 定陶县| 邻水| 容城县| 汽车| 彭阳县| 藁城市| 沙雅县| 洛川县| 达日县| 商城县| 东港市| 富平县| 镇宁| 阿克苏市| 满城县| 清涧县| 丰顺县| 邛崃市| 棋牌| 高安市| 南涧| 汕头市| 桦南县| 建瓯市| 天气| 城固县| 阿勒泰市| 永宁县| 台东县| 黑山县| 萨嘎县| 昌宁县| 长宁区| 汨罗市| 永德县| 湖口县| 敦化市| 乌鲁木齐县| 中卫市| 大余县|