找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: FARCE
31#
發(fā)表于 2025-3-27 00:17:36 | 只看該作者
Michael R. Hammock,J. Wilson Mixonanar drawing of . exists such that each edge is monotone in the .-direction and, for any .,.?∈?. with .(.)?
32#
發(fā)表于 2025-3-27 02:20:11 | 只看該作者
Microeconomic Theory for the Social Sciencesarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any
33#
發(fā)表于 2025-3-27 08:28:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:50:56 | 只看該作者
35#
發(fā)表于 2025-3-27 16:36:45 | 只看該作者
36#
發(fā)表于 2025-3-27 17:49:12 | 只看該作者
https://doi.org/10.1007/978-3-319-47587-5s in a .-quasi-planar graph on . vertices is .(.). Fox and Pach showed that every .-quasi-planar graph with . vertices and no pair of edges intersecting in more than .(1) points has at most .(log.). edges. We improve this upper bound to ., where .(.) denotes the inverse Ackermann function, and . dep
37#
發(fā)表于 2025-3-28 00:23:57 | 只看該作者
Alexander E. Popugaev,Rainer Wanschaphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recognition is .-hard..Our main result is a linear-time algorithm that first tests whether a graph?. is ., and then computes an embedding. Moreover, the algorithm can augment . to a maxim
38#
發(fā)表于 2025-3-28 05:11:12 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:19 | 只看該作者
Timing Methods and Programmable Timers,ntation extension problem for circle graphs, where the input consists of a graph . and a partial representation . giving some pre-drawn chords that represent an induced subgraph of .. The question is whether one can extend . to a representation . of the entire ., i.e., whether one can draw the remai
40#
發(fā)表于 2025-3-28 11:58:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都兰县| 台东县| 武陟县| 黄平县| 宜兰市| 清原| 右玉县| 华安县| 双牌县| 黑山县| 伊春市| 民勤县| 福州市| 沧州市| 呈贡县| 宜君县| 德清县| 岑巩县| 简阳市| 那坡县| 无锡市| 株洲县| 南开区| 巫溪县| 微博| 濉溪县| 卢龙县| 剑川县| 汪清县| 枣庄市| 黄大仙区| 永丰县| 宁夏| 九江县| 阆中市| 名山县| 丰县| 平度市| 汤原县| 舞阳县| 灌云县|