找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: FARCE
11#
發(fā)表于 2025-3-23 13:35:50 | 只看該作者
Upward Planarity Testing: A Computational Studyictly monotonously increasing .-coordinates. Testing whether a graph allows such a drawing is known to be NP-complete, but there is a substantial collection of different algorithmic approaches known in literature..In this paper, we give an overview of the known algorithms, ranging from combinatorial
12#
發(fā)表于 2025-3-23 16:08:33 | 只看該作者
13#
發(fā)表于 2025-3-23 21:02:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:07:29 | 只看該作者
Morphing Planar Graph Drawings Efficientlyarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any
15#
發(fā)表于 2025-3-24 02:43:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:39 | 只看該作者
A Linear-Time Algorithm for Testing Outer-1-Planaritye outer face and each edge has at most one crossing. We present a linear time algorithm to test whether a graph is outer-1-planar. The algorithm can be used to produce an outer-1-planar embedding in linear time if it exists.
17#
發(fā)表于 2025-3-24 10:51:45 | 只看該作者
Straight-Line Grid Drawings of 3-Connected 1-Planar Graphse drawings. We show that every 3-connected 1-planar graph has a straight-line drawing on an integer grid of quadratic size, with the exception of a single edge on the outer face that has one bend. The drawing can be computed in linear time from any given 1-planar embedding of the graph.
18#
發(fā)表于 2025-3-24 18:14:54 | 只看該作者
New Bounds on the Maximum Number of Edges in ,-Quasi-Planar Graphss in a .-quasi-planar graph on . vertices is .(.). Fox and Pach showed that every .-quasi-planar graph with . vertices and no pair of edges intersecting in more than .(1) points has at most .(log.). edges. We improve this upper bound to ., where .(.) denotes the inverse Ackermann function, and . dep
19#
發(fā)表于 2025-3-24 22:06:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会东县| 福泉市| 沙洋县| 临漳县| 石台县| 绍兴县| 曲阜市| 阿鲁科尔沁旗| 太和县| 辉南县| 田林县| 武义县| 澎湖县| 炎陵县| 朔州市| 博爱县| 靖远县| 上虞市| 济源市| 策勒县| 淮南市| 成都市| 广宗县| 故城县| 湟中县| 新乐市| 锡林郭勒盟| 城口县| 社会| 响水县| 平乐县| 德昌县| 鹤壁市| 犍为县| 丰镇市| 石家庄市| 桓仁| 正定县| 青海省| 普格县| 宜春市|