找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 08:20:02 | 只看該作者
52#
發(fā)表于 2025-3-30 15:40:30 | 只看該作者
Point-Set Embedding of Trees with Edge Constraintson . that includes the given partial drawing of .′. We concentrate on trees and show how to compute the output in .(.. log.) time and with at most 1?+?2 ?./2 ? bends per edge, where . is the number of vertices of the given subdrawing. We also prove that there are instances of the problem which require at least .???3 bends for some of the edges.
53#
發(fā)表于 2025-3-30 20:11:33 | 只看該作者
Representation of Planar Hypergraphs by Contacts of Triangles of those hypergraphs which are representable by contact of segments in the plane, We propose some possible generalization directions and open problems, related to the order dimension of the incidence posets of hypergraphs.
54#
發(fā)表于 2025-3-30 23:16:30 | 只看該作者
https://doi.org/10.1007/978-81-322-2598-0lgorithms for the case that seeds are points and covers are disks or triangles. We show that the problem becomes NP-hard if seeds and covers are disks. Concerning task?(b) we show that it is even NP-hard for point seeds and disk covers (given a fixed correspondence between vertices and seeds).
55#
發(fā)表于 2025-3-31 02:53:24 | 只看該作者
56#
發(fā)表于 2025-3-31 06:35:25 | 只看該作者
Crossing Number of Graphs with Rotation Systemsf multigraphs with rotation systems on a fixed number . of vertices. For .?=?1 and .?=?2 the crossing number can be computed in polynomial time and approximated to within a factor of 2 in linear time. For larger . we show how to approximate the crossing number to within a factor of . in time .(..) on a graph with . edges.
57#
發(fā)表于 2025-3-31 09:14:38 | 只看該作者
Characterization of Unlabeled Level Planar Graphse labelings. Our contributions are twofold. First, we provide linear time drawing algorithms for . graphs. Second, we provide a complete characterization of . graphs by showing that any other graph must contain a subgraph homeomorphic to one of seven forbidden graphs.
58#
發(fā)表于 2025-3-31 15:07:11 | 只看該作者
Moving Vertices to Make Drawings Planeow that . is NP-hard and hard to approximate. Second, we establish a connection to the graph-drawing problem ., which yields similar results for that problem. Third, we give bounds for the behavior of . on trees and general planar graphs.
59#
發(fā)表于 2025-3-31 19:50:11 | 只看該作者
60#
發(fā)表于 2025-3-31 23:58:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舟山市| 鄂尔多斯市| 宁国市| 盘锦市| 文安县| 通许县| 湖南省| 中牟县| 克什克腾旗| 尤溪县| 农安县| 保亭| 富民县| 新安县| 府谷县| 衢州市| 东方市| 怀来县| 丽江市| 凉山| 华安县| 镇雄县| 牡丹江市| SHOW| 灌南县| 枣阳市| 澄江县| 新和县| 隆尧县| 清流县| 招远市| 和平县| 合水县| 兴宁市| 双桥区| 都江堰市| 永清县| 白水县| 东光县| 天长市| 英山县|