找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 我沒有辱罵
11#
發(fā)表于 2025-3-23 11:54:25 | 只看該作者
Khem Chand Saini,Sanjeeva Nayaka,Felix BastWe prove that the crossing number of a graph decays in a “continuous fashion” in the following sense. For any .>?0 there is a .>?0 such that for . sufficiently large, every graph . with . vertices and .?≥?.. edges has a subgraph .′ of at most (1???.). edges and crossing number at least .. This generalizes the result of J. Fox and Cs. Tóth.
12#
發(fā)表于 2025-3-23 16:46:17 | 只看該作者
13#
發(fā)表于 2025-3-23 18:23:06 | 只看該作者
https://doi.org/10.1007/978-2-8178-0922-9We describe a practical method to test a leveled graph for level planarity and provide a level planar layout of the graph if the test succeeds, all in quadratic running-time. Embedding constraints restricting the order of incident edges around the vertices are allowed.
14#
發(fā)表于 2025-3-23 22:24:38 | 只看該作者
Computing Symmetries of Combinatorial ObjectsWe survey the practical aspects of computing the symmetries (automorphisms) of combinatorial objects. These include all manner of graphs with adornments, matrices, point sets, etc.. Since automorphisms are just isomorphisms from an object to itself, the problem is intimately related to that of finding isomorphisms between two objects.
15#
發(fā)表于 2025-3-24 05:00:38 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:48 | 只看該作者
17#
發(fā)表于 2025-3-24 13:07:04 | 只看該作者
Practical Level Planarity Testing and Layout with Embedding ConstraintsWe describe a practical method to test a leveled graph for level planarity and provide a level planar layout of the graph if the test succeeds, all in quadratic running-time. Embedding constraints restricting the order of incident edges around the vertices are allowed.
18#
發(fā)表于 2025-3-24 16:16:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:57:39 | 只看該作者
Crossing Number of Graphs with Rotation Systems Hliněny’s result, that computing the crossing number of a cubic graph (without rotation system) is .-complete. We also investigate the special case of multigraphs with rotation systems on a fixed number . of vertices. For .?=?1 and .?=?2 the crossing number can be computed in polynomial time and ap
20#
發(fā)表于 2025-3-24 23:56:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四会市| 高密市| 青海省| 安福县| 沙田区| 巍山| 崇礼县| 新余市| 河北区| 德保县| 乐亭县| 龙山县| 旬邑县| 高青县| 家居| 铜梁县| 杂多县| 隆德县| 永胜县| 陇南市| 阿鲁科尔沁旗| 清水县| 五大连池市| 扶沟县| 米脂县| 历史| 长乐市| 马龙县| 灌阳县| 竹山县| 太原市| 通许县| 延庆县| 沙田区| 朔州市| 栾川县| 永德县| 杂多县| 辽中县| 台东市| 汉中市|