找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Minkowski Space-Time; Francesco Catoni,Dino Boccaletti,Paolo Zampetti Book 2011 Francesco Catoni 2011 Minkowski space-time.hy

[復(fù)制鏈接]
樓主: Intimidate
11#
發(fā)表于 2025-3-23 11:21:47 | 只看該作者
Anarchismus (Zusammenfassende Darstellung),The equilateral hyperbolas, represented in the Minkowski space-time, hold the same properties of circles in Euclidean plane and satisfy similar theorems. At the same time equivalent relations to the ones in Euclidean plane between circles and triangles are obtained in hyperbolic plane between equilateral hyperbolas and triangles.
12#
發(fā)表于 2025-3-23 14:55:42 | 只看該作者
13#
發(fā)表于 2025-3-23 18:14:59 | 只看該作者
14#
發(fā)表于 2025-3-24 00:18:10 | 只看該作者
Francesco Catoni,Dino Boccaletti,Paolo ZampettiProvides an original introduction to the geometry of Minkowski spacetime.Gives concise guidance to solving problems of relativistic kinematics.Contains problems of relativistic kinematics.Solves the "
15#
發(fā)表于 2025-3-24 04:24:37 | 只看該作者
16#
發(fā)表于 2025-3-24 06:47:33 | 只看該作者
17#
發(fā)表于 2025-3-24 12:59:30 | 只看該作者
https://doi.org/10.1007/978-3-642-17977-8Minkowski space-time; hyperbolic numbers; mathematical methods in physics; non-Euclidean geometry; numbe
18#
發(fā)表于 2025-3-24 16:30:13 | 只看該作者
,Vier Wege zur Begründung der Demokratie,ectors in Euclidean plane. As a difference with vectors the multiplication of two complex numbers is yet a complex number. By means of this property complex numbers can be generalized and hyperbolic numbers that have properties corresponding to Lorentz group of two-dimensional Special Relativity are introduced.
19#
發(fā)表于 2025-3-24 20:04:25 | 只看該作者
,Soziale und regionale Mobilit?t,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
20#
發(fā)表于 2025-3-25 02:38:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德钦县| 桑植县| 西林县| 洪江市| 武隆县| 胶州市| 大城县| 高陵县| 荥阳市| 桃园市| 舞阳县| 丰台区| 连平县| 聊城市| 鹤壁市| 普兰县| 嘉定区| 云梦县| 军事| 南昌县| 延长县| 吉安市| 中方县| 海丰县| 慈溪市| 噶尔县| 南充市| 西宁市| 会宁县| 中阳县| 图们市| 建瓯市| 宿松县| 柳河县| 怀安县| 丰台区| 乡城县| 绥德县| 晋宁县| 广安市| 芒康县|