找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Minkowski Space-Time; Francesco Catoni,Dino Boccaletti,Paolo Zampetti Book 2011 Francesco Catoni 2011 Minkowski space-time.hy

[復(fù)制鏈接]
樓主: Intimidate
21#
發(fā)表于 2025-3-25 05:25:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:16 | 只看該作者
23#
發(fā)表于 2025-3-25 14:42:19 | 只看該作者
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
24#
發(fā)表于 2025-3-25 18:49:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:48 | 只看該作者
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
26#
發(fā)表于 2025-3-26 03:47:39 | 只看該作者
Introduction,c (e.m.) theory of obeying Galilean transformations. The non-invariance of the e.m. theory under Galilean transformations induced the theoretical physicists, at the end of the twelfth century, to invent new space–time transformations which did not allow to consider the time variable as “absolutely”
27#
發(fā)表于 2025-3-26 04:49:40 | 只看該作者
28#
發(fā)表于 2025-3-26 10:44:14 | 只看該作者
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
29#
發(fā)表于 2025-3-26 13:45:17 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:23 | 只看該作者
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿宁县| 崇州市| 文登市| 赤城县| 顺义区| 伊宁市| 中方县| 广平县| 高州市| 平陆县| 江川县| 明水县| 兴义市| 安徽省| 余庆县| 光泽县| 武定县| 汤阴县| 广南县| 隆尧县| 平舆县| 澳门| 连城县| 宣汉县| 芮城县| 天气| 广丰县| 志丹县| 固安县| 含山县| 美姑县| 腾冲县| 连山| 曲沃县| 沙田区| 安平县| 佛坪县| 确山县| 满洲里市| 南陵县| 松阳县|