找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Hypersurfaces; Thomas E. Cecil,Patrick J. Ryan Book 2015 Thomas E. Cecil and Patrick J. Ryan 2015 Dupin hypersurfaces.Hopf hyp

[復(fù)制鏈接]
樓主: 退縮
21#
發(fā)表于 2025-3-25 05:26:42 | 只看該作者
Systeme von linearen Gleichungen,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
22#
發(fā)表于 2025-3-25 10:29:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:23:08 | 只看該作者
Complex Submanifolds of ,, and ,,,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
24#
發(fā)表于 2025-3-25 17:48:46 | 只看該作者
,Die Mi?bildungen des weiblichen Genitales,aces in later chapters. Topics treated include focal sets, parallel hypersurfaces, tubes, tight and taut immersions, the relationship between taut and Dupin submanifolds, and the standard embeddings of projective spaces.
25#
發(fā)表于 2025-3-25 21:03:00 | 只看該作者
26#
發(fā)表于 2025-3-26 02:50:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:21:13 | 只看該作者
Idealtypen als hypothesenbildende Modelle: sphere geometry, and many classification results have been obtained in that setting. In this chapter, we will use the viewpoint of the metric geometry of . as well as that of Lie sphere geometry to obtain results about Dupin hypersurfaces.
28#
發(fā)表于 2025-3-26 10:37:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:50:21 | 只看該作者
Anwendungen der Differentialquotienten,Berndt [30] in .. (see Theorem?8.12). These classifications state that such a hypersurface is an open subset of a hypersurface on Takagi’s list for .., and on Montiel’s list for ... We then study several characterizations of these hypersurfaces based on conditions on their shape operators, curvature
30#
發(fā)表于 2025-3-26 18:29:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
年辖:市辖区| 满城县| 镇康县| 玉门市| 孝义市| 宣武区| 雷山县| 辽阳县| 吉隆县| 长汀县| 沂南县| 苗栗县| 昭觉县| 七台河市| 永靖县| 兴化市| 罗平县| 容城县| 紫金县| 调兵山市| 荃湾区| 五大连池市| 舞钢市| 周至县| 临夏县| 城步| 舟山市| 宣恩县| 册亨县| 汕头市| 灌南县| 武平县| 宝应县| 郧西县| 广德县| 海阳市| 孝昌县| 南部县| 建水县| 宁陕县| 普兰县|