找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Hypersurfaces; Thomas E. Cecil,Patrick J. Ryan Book 2015 Thomas E. Cecil and Patrick J. Ryan 2015 Dupin hypersurfaces.Hopf hyp

[復制鏈接]
樓主: 退縮
11#
發(fā)表于 2025-3-23 12:29:02 | 只看該作者
Submanifolds in Lie Sphere Geometry,upin hypersurfaces this has proven to be a valuable approach, since Dupin hypersurfaces occur naturally as envelopes of families of spheres, which can be handled well in Lie sphere geometry. Since the Dupin property is invariant under Lie sphere transformations, this is also a natural setting for cl
12#
發(fā)表于 2025-3-23 17:15:15 | 只看該作者
Dupin Hypersurfaces,sphere geometry, and many classification results have been obtained in that setting. In this chapter, we will use the viewpoint of the metric geometry of . as well as that of Lie sphere geometry to obtain results about Dupin hypersurfaces.
13#
發(fā)表于 2025-3-23 20:48:03 | 只看該作者
Real Hypersurfaces in Complex Space Forms,on isoparametric hypersurfaces in spheres. A key early work was Takagi’s classification [669] in 1973 of homogeneous real hypersurfaces in ... These hypersurfaces necessarily have constant principal curvatures, and they serve as model spaces for many subsequent classification theorems. Later Montiel
14#
發(fā)表于 2025-3-23 23:19:56 | 只看該作者
Hopf Hypersurfaces,Berndt [30] in .. (see Theorem?8.12). These classifications state that such a hypersurface is an open subset of a hypersurface on Takagi’s list for .., and on Montiel’s list for ... We then study several characterizations of these hypersurfaces based on conditions on their shape operators, curvature
15#
發(fā)表于 2025-3-24 05:34:38 | 只看該作者
16#
發(fā)表于 2025-3-24 06:48:41 | 只看該作者
978-1-4939-4507-8Thomas E. Cecil and Patrick J. Ryan 2015
17#
發(fā)表于 2025-3-24 14:12:57 | 只看該作者
18#
發(fā)表于 2025-3-24 17:16:19 | 只看該作者
19#
發(fā)表于 2025-3-24 19:44:28 | 只看該作者
https://doi.org/10.1007/978-1-4939-3246-7Dupin hypersurfaces; Hopf hypersurfaces; Lie sphere geometry; differential geometry submanifolds; geomet
20#
發(fā)表于 2025-3-25 01:36:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宣威市| 温泉县| 石门县| 云南省| 霍州市| 宽城| 台湾省| 巴彦淖尔市| 隆回县| 台中市| 酒泉市| 湄潭县| 清丰县| 马鞍山市| 双牌县| 高雄市| 泰来县| 泗水县| 长海县| 宜宾县| 密云县| 镶黄旗| 阳原县| 巩留县| 花垣县| 阿克| 商都县| 尤溪县| 云浮市| 天门市| 共和县| 中阳县| 都昌县| 铅山县| 崇左市| 长海县| 阿拉善右旗| 石楼县| 海门市| 阿勒泰市| 汝城县|